4 Search Results for "Berwanger, Dietmar"


Document
Observation and Distinction. Representing Information in Infinite Games

Authors: Dietmar Berwanger and Laurent Doyen

Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)


Abstract
We compare two approaches for modelling imperfect information in infinite games by using finite-state automata. The first, more standard approach views information as the result of an observation process driven by a sequential Mealy machine. In contrast, the second approach features indistinguishability relations described by synchronous two-tape automata. The indistinguishability-relation model turns out to be strictly more expressive than the one based on observations. We present a characterisation of the indistinguishability relations that admit a representation as a finite-state observation function. We show that the characterisation is decidable, and give a procedure to construct a corresponding Mealy machine whenever one exists.

Cite as

Dietmar Berwanger and Laurent Doyen. Observation and Distinction. Representing Information in Infinite Games. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 48:1-48:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{berwanger_et_al:LIPIcs.STACS.2020.48,
  author =	{Berwanger, Dietmar and Doyen, Laurent},
  title =	{{Observation and Distinction. Representing Information in Infinite Games}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{48:1--48:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Paul, Christophe and Bl\"{a}ser, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.48},
  URN =		{urn:nbn:de:0030-drops-119095},
  doi =		{10.4230/LIPIcs.STACS.2020.48},
  annote =	{Keywords: Infinite Games on Finite Graphs, Imperfect Information, Automatic Structures}
}
Document
Games with Delays - A Frankenstein Approach

Authors: Dietmar Berwanger and Marie van den Bogaard

Published in: LIPIcs, Volume 45, 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)


Abstract
We investigate infinite games on finite graphs where the information flow is perturbed by non- deterministic signalling delays. It is known that such perturbations make synthesis problems virtually unsolvable, in the general case. On the classical model where signals are attached to states, tractable cases are rare and difficult to identify. In this paper, we propose a model where signals are detached from control states, and we identify a subclass on which equilibrium outcomes can be preserved, even if signals are delivered with a delay that is finitely bounded. To offset the perturbation, our solution procedure combines responses from a collection of virtual plays following an equilibrium strategy in the instant- signalling game to synthesise, in a Dr. Frankenstein manner, an equivalent equilibrium strategy for the delayed-signalling game.

Cite as

Dietmar Berwanger and Marie van den Bogaard. Games with Delays - A Frankenstein Approach. In 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 45, pp. 307-319, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{berwanger_et_al:LIPIcs.FSTTCS.2015.307,
  author =	{Berwanger, Dietmar and van den Bogaard, Marie},
  title =	{{Games with Delays - A Frankenstein Approach}},
  booktitle =	{35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)},
  pages =	{307--319},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-97-2},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{45},
  editor =	{Harsha, Prahladh and Ramalingam, G.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2015.307},
  URN =		{urn:nbn:de:0030-drops-56575},
  doi =		{10.4230/LIPIcs.FSTTCS.2015.307},
  annote =	{Keywords: infinite games on graphs, imperfect information, delayed monitoring, distributed synthesis}
}
Document
A Perfect-Information Construction for Coordination in Games

Authors: Dietmar Berwanger, Lukasz Kaiser, and Bernd Puchala

Published in: LIPIcs, Volume 13, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011)


Abstract
We present a general construction for eliminating imperfect information from games with several players who coordinate against nature, and to transform them into two-player games with perfect information while preserving winning strategy profiles. The construction yields an infinite game tree with epistemic models associated to nodes. To obtain a more succinct representation, we define an abstraction based on homomorphic equivalence, which we prove to be sound for games with observable winning conditions. The abstraction generates finite game graphs in several relevant cases, and leads to a new semi-decision procedure for multi-player games with imperfect information.

Cite as

Dietmar Berwanger, Lukasz Kaiser, and Bernd Puchala. A Perfect-Information Construction for Coordination in Games. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 13, pp. 387-398, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{berwanger_et_al:LIPIcs.FSTTCS.2011.387,
  author =	{Berwanger, Dietmar and Kaiser, Lukasz and Puchala, Bernd},
  title =	{{A Perfect-Information Construction for Coordination in Games}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011)},
  pages =	{387--398},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-34-7},
  ISSN =	{1868-8969},
  year =	{2011},
  volume =	{13},
  editor =	{Chakraborty, Supratik and Kumar, Amit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2011.387},
  URN =		{urn:nbn:de:0030-drops-33354},
  doi =		{10.4230/LIPIcs.FSTTCS.2011.387},
  annote =	{Keywords: Distributed Synthesis, Games on Graphs, Imperfect Information, Epistemic Models}
}
Document
On the Power of Imperfect Information

Authors: Dietmar Berwanger and Laurent Doyen

Published in: LIPIcs, Volume 2, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2008)


Abstract
We present a polynomial-time reduction from parity games with imperfect information to safety games with imperfect information. Similar reductions for games with perfect information typically increase the game size exponentially. Our construction avoids such a blow-up by using imperfect information to realise succinct counters which cover a range exponentially larger than their size. In particular, the reduction shows that the problem of solving imperfect-information games with safety conditions is \EXPTIME-complete.

Cite as

Dietmar Berwanger and Laurent Doyen. On the Power of Imperfect Information. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 2, pp. 73-82, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{berwanger_et_al:LIPIcs.FSTTCS.2008.1742,
  author =	{Berwanger, Dietmar and Doyen, Laurent},
  title =	{{On the Power of Imperfect Information}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{73--82},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-08-8},
  ISSN =	{1868-8969},
  year =	{2008},
  volume =	{2},
  editor =	{Hariharan, Ramesh and Mukund, Madhavan and Vinay, V},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2008.1742},
  URN =		{urn:nbn:de:0030-drops-17427},
  doi =		{10.4230/LIPIcs.FSTTCS.2008.1742},
  annote =	{Keywords: Infinite games, imperfect information}
}
  • Refine by Author
  • 4 Berwanger, Dietmar
  • 2 Doyen, Laurent
  • 1 Kaiser, Lukasz
  • 1 Puchala, Bernd
  • 1 van den Bogaard, Marie

  • Refine by Classification
  • 1 Computing methodologies → Planning under uncertainty
  • 1 Computing methodologies → Reasoning about belief and knowledge
  • 1 Theory of computation → Automata over infinite objects
  • 1 Theory of computation → Representations of games and their complexity

  • Refine by Keyword
  • 2 Imperfect Information
  • 2 imperfect information
  • 1 Automatic Structures
  • 1 Distributed Synthesis
  • 1 Epistemic Models
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2008
  • 1 2011
  • 1 2015
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail