107 Search Results for "Chechik, Shiri"


Volume

LIPIcs, Volume 244

30th Annual European Symposium on Algorithms (ESA 2022)

ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany

Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman

Document
Dynamic Graph Algorithms (Dagstuhl Seminar 22461)

Authors: Aaron Bernstein, Shiri Chechik, Sebastian Forster, Tsvi Kopelowitz, Yasamin Nazari, and Nicole Wein

Published in: Dagstuhl Reports, Volume 12, Issue 11 (2023)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22461 “Dynamic Graph Algorithms”, which took place from November 13 to November 18, 2022. The field of dynamic graph algorithms studies algorithms for processing graphs that are changing over time. Formally, the goal is to process an interleaved sequence of update and query operations, where an update operation changes the input graph (e.g. inserts/deletes an edge), while the query operation is problem-specific and asks for some information about the current graph – for example, an s-t path, or a minimum spanning tree. The field has evolved rapidly over the past decade, and this Dagstuhl Seminar brought together leading researchers in dynamic algorithms and related areas of graph algorithms.

Cite as

Aaron Bernstein, Shiri Chechik, Sebastian Forster, Tsvi Kopelowitz, Yasamin Nazari, and Nicole Wein. Dynamic Graph Algorithms (Dagstuhl Seminar 22461). In Dagstuhl Reports, Volume 12, Issue 11, pp. 45-65, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{bernstein_et_al:DagRep.12.11.45,
  author =	{Bernstein, Aaron and Chechik, Shiri and Forster, Sebastian and Kopelowitz, Tsvi and Nazari, Yasamin and Wein, Nicole},
  title =	{{Dynamic Graph Algorithms (Dagstuhl Seminar 22461)}},
  pages =	{45--65},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2023},
  volume =	{12},
  number =	{11},
  editor =	{Bernstein, Aaron and Chechik, Shiri and Forster, Sebastian and Kopelowitz, Tsvi and Nazari, Yasamin and Wein, Nicole},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.12.11.45},
  URN =		{urn:nbn:de:0030-drops-178354},
  doi =		{10.4230/DagRep.12.11.45},
  annote =	{Keywords: dynamic graphs, graph algorithms}
}
Document
Complete Volume
LIPIcs, Volume 244, ESA 2022, Complete Volume

Authors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
LIPIcs, Volume 244, ESA 2022, Complete Volume

Cite as

30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 1-1406, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Proceedings{chechik_et_al:LIPIcs.ESA.2022,
  title =	{{LIPIcs, Volume 244, ESA 2022, Complete Volume}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{1--1406},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022},
  URN =		{urn:nbn:de:0030-drops-169374},
  doi =		{10.4230/LIPIcs.ESA.2022},
  annote =	{Keywords: LIPIcs, Volume 244, ESA 2022, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 0:i-0:xxii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chechik_et_al:LIPIcs.ESA.2022.0,
  author =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{0:i--0:xxii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.0},
  URN =		{urn:nbn:de:0030-drops-169382},
  doi =		{10.4230/LIPIcs.ESA.2022.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Enumerating Minimal Connected Dominating Sets

Authors: Faisal N. Abu-Khzam, Henning Fernau, Benjamin Gras, Mathieu Liedloff, and Kevin Mann

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
The question to enumerate all (inclusion-wise) minimal connected dominating sets in a graph of order n in time significantly less than 2ⁿ is an open question that was asked in many places. We answer this question affirmatively, by providing an enumeration algorithm that runs in time 𝒪(1.9896ⁿ), using polynomial space only. The key to this result is the consideration of this enumeration problem on 2-degenerate graphs, which is proven to be possible in time 𝒪(1.9767ⁿ). Apart from solving this old open question, we also show new lower bound results. More precisely, we construct a family of graphs of order n with Ω(1.4890ⁿ) many minimal connected dominating sets, while previous examples achieved Ω(1.4422ⁿ). Our example happens to yield 4-degenerate graphs. Additionally, we give lower bounds for the previously not considered classes of 2-degenerate and of 3-degenerate graphs, which are Ω(1.3195ⁿ) and Ω(1.4723ⁿ), respectively. We also address essential questions concerning output-sensitive enumeration. Namely, we give reasons why our algorithm cannot be turned into an enumeration algorithm that guarantees polynomial delay without much efforts. More precisely, we prove that it is NP-complete to decide, given a graph G and a vertex set U, if there exists a minimal connected dominating set D with U ⊆ D, even if G is known to be 2-degenerate. Our reduction also shows that even any subexponential delay is not easy to achieve for enumerating minimal connected dominating sets. Another reduction shows that no FPT-algorithms can be expected for this extension problem concerning minimal connected dominating sets, parameterized by |U|. This also adds one more problem to the still rather few natural parameterized problems that are complete for the class W[3]. We also relate our enumeration problem to the famous open Hitting Set Transversal problem, which can be phrased in our context as the question to enumerate all minimal dominating sets of a graph with polynomial delay by showing that a polynomial-delay enumeration algorithm for minimal connected dominating sets implies an affirmative algorithmic solution to the Hitting Set Transversal problem.

Cite as

Faisal N. Abu-Khzam, Henning Fernau, Benjamin Gras, Mathieu Liedloff, and Kevin Mann. Enumerating Minimal Connected Dominating Sets. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 1:1-1:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{abukhzam_et_al:LIPIcs.ESA.2022.1,
  author =	{Abu-Khzam, Faisal N. and Fernau, Henning and Gras, Benjamin and Liedloff, Mathieu and Mann, Kevin},
  title =	{{Enumerating Minimal Connected Dominating Sets}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{1:1--1:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.1},
  URN =		{urn:nbn:de:0030-drops-169390},
  doi =		{10.4230/LIPIcs.ESA.2022.1},
  annote =	{Keywords: enumeration problems, connected domination, degenerate graphs}
}
Document
Non-Adaptive Edge Counting and Sampling via Bipartite Independent Set Queries

Authors: Raghavendra Addanki, Andrew McGregor, and Cameron Musco

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We study the problem of estimating the number of edges in an n-vertex graph, accessed via the Bipartite Independent Set query model introduced by Beame et al. (TALG '20). In this model, each query returns a Boolean, indicating the existence of at least one edge between two specified sets of nodes. We present a non-adaptive algorithm that returns a (1± ε) relative error approximation to the number of edges, with query complexity Õ(ε^{-5}log⁵ n), where Õ(⋅) hides poly(log log n) dependencies. This is the first non-adaptive algorithm in this setting achieving poly(1/ε,log n) query complexity. Prior work requires Ω(log² n) rounds of adaptivity. We avoid this by taking a fundamentally different approach, inspired by work on single-pass streaming algorithms. Moreover, for constant ε, our query complexity significantly improves on the best known adaptive algorithm due to Bhattacharya et al. (STACS '22), which requires O(ε^{-2} log^{11} n) queries. Building on our edge estimation result, we give the first {non-adaptive} algorithm for outputting a nearly uniformly sampled edge with query complexity Õ(ε^{-6} log⁶ n), improving on the works of Dell et al. (SODA '20) and Bhattacharya et al. (STACS '22), which require Ω(log³ n) rounds of adaptivity. Finally, as a consequence of our edge sampling algorithm, we obtain a Õ(n log^8 n) query algorithm for connectivity, using two rounds of adaptivity. This improves on a three-round algorithm of Assadi et al. (ESA '21) and is tight; there is no non-adaptive algorithm for connectivity making o(n²) queries.

Cite as

Raghavendra Addanki, Andrew McGregor, and Cameron Musco. Non-Adaptive Edge Counting and Sampling via Bipartite Independent Set Queries. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 2:1-2:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{addanki_et_al:LIPIcs.ESA.2022.2,
  author =	{Addanki, Raghavendra and McGregor, Andrew and Musco, Cameron},
  title =	{{Non-Adaptive Edge Counting and Sampling via Bipartite Independent Set Queries}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{2:1--2:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.2},
  URN =		{urn:nbn:de:0030-drops-169400},
  doi =		{10.4230/LIPIcs.ESA.2022.2},
  annote =	{Keywords: sublinear graph algorithms, bipartite independent set queries, edge sampling and counting, graph connectivity, query adaptivity}
}
Document
Hardness of Token Swapping on Trees

Authors: Oswin Aichholzer, Erik D. Demaine, Matias Korman, Anna Lubiw, Jayson Lynch, Zuzana Masárová, Mikhail Rudoy, Virginia Vassilevska Williams, and Nicole Wein

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Given a graph where every vertex has exactly one labeled token, how can we most quickly execute a given permutation on the tokens? In (sequential) token swapping, the goal is to use the shortest possible sequence of swaps, each of which exchanges the tokens at the two endpoints of an edge of the graph. In parallel token swapping, the goal is to use the fewest rounds, each of which consists of one or more swaps on the edges of a matching. We prove that both of these problems remain NP-hard when the graph is restricted to be a tree. These token swapping problems have been studied by disparate groups of researchers in discrete mathematics, theoretical computer science, robot motion planning, game theory, and engineering. Previous work establishes NP-completeness on general graphs (for both problems), constant-factor approximation algorithms, and some poly-time exact algorithms for simple graph classes such as cliques, stars, paths, and cycles. Sequential and parallel token swapping on trees were first studied over thirty years ago (as "sorting with a transposition tree") and over twenty-five years ago (as "routing permutations via matchings"), yet their complexities were previously unknown. We also show limitations on approximation of sequential token swapping on trees: we identify a broad class of algorithms that encompass all three known polynomial-time algorithms that achieve the best known approximation factor (which is 2) and show that no such algorithm can achieve an approximation factor less than 2.

Cite as

Oswin Aichholzer, Erik D. Demaine, Matias Korman, Anna Lubiw, Jayson Lynch, Zuzana Masárová, Mikhail Rudoy, Virginia Vassilevska Williams, and Nicole Wein. Hardness of Token Swapping on Trees. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{aichholzer_et_al:LIPIcs.ESA.2022.3,
  author =	{Aichholzer, Oswin and Demaine, Erik D. and Korman, Matias and Lubiw, Anna and Lynch, Jayson and Mas\'{a}rov\'{a}, Zuzana and Rudoy, Mikhail and Vassilevska Williams, Virginia and Wein, Nicole},
  title =	{{Hardness of Token Swapping on Trees}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.3},
  URN =		{urn:nbn:de:0030-drops-169413},
  doi =		{10.4230/LIPIcs.ESA.2022.3},
  annote =	{Keywords: Sorting, Token swapping, Trees, NP-hard, Approximation}
}
Document
Tight Bounds for Online Matching in Bounded-Degree Graphs with Vertex Capacities

Authors: Susanne Albers and Sebastian Schubert

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We study the b-matching problem in bipartite graphs G = (S,R,E). Each vertex s ∈ S is a server with individual capacity b_s. The vertices r ∈ R are requests that arrive online and must be assigned instantly to an eligible server. The goal is to maximize the size of the constructed matching. We assume that G is a (k,d)-graph [J. Naor and D. Wajc, 2018], where k specifies a lower bound on the degree of each server and d is an upper bound on the degree of each request. This setting models matching problems in timely applications. We present tight upper and lower bounds on the performance of deterministic online algorithms. In particular, we develop a new online algorithm via a primal-dual analysis. The optimal competitive ratio tends to 1, for arbitrary k ≥ d, as the server capacities increase. Hence, nearly optimal solutions can be computed online. Our results also hold for the vertex-weighted problem extension, and thus for AdWords and auction problems in which each bidder issues individual, equally valued bids. Our bounds improve the previous best competitive ratios. The asymptotic competitiveness of 1 is a significant improvement over the previous factor of 1-1/e^{k/d}, for the interesting range where k/d ≥ 1 is small. Recall that 1-1/e ≈ 0.63. Matching problems that admit a competitive ratio arbitrarily close to 1 are rare. Prior results rely on randomization or probabilistic input models.

Cite as

Susanne Albers and Sebastian Schubert. Tight Bounds for Online Matching in Bounded-Degree Graphs with Vertex Capacities. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 4:1-4:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{albers_et_al:LIPIcs.ESA.2022.4,
  author =	{Albers, Susanne and Schubert, Sebastian},
  title =	{{Tight Bounds for Online Matching in Bounded-Degree Graphs with Vertex Capacities}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{4:1--4:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.4},
  URN =		{urn:nbn:de:0030-drops-169420},
  doi =		{10.4230/LIPIcs.ESA.2022.4},
  annote =	{Keywords: online algorithms, deterministic algorithms, primal-dual analysis, b-matching, bounded-degree graph, variable vertex capacities, unweighted matching, vertex-weighted matching}
}
Document
TSP in a Simple Polygon

Authors: Henk Alkema, Mark de Berg, Morteza Monemizadeh, and Leonidas Theocharous

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We study the Traveling Salesman Problem inside a simple polygon. In this problem, which we call tsp in a simple polygon, we wish to compute a shortest tour that visits a given set S of n sites inside a simple polygon P with m edges while staying inside the polygon. This natural problem has, to the best of our knowledge, not been studied so far from a theoretical perspective. It can be solved exactly in poly(n,m) + 2^O(√nlog n) time, using an algorithm by Marx, Pilipczuk, and Pilipczuk (FOCS 2018) for subset tsp as a subroutine. We present a much simpler algorithm that solves tsp in a simple polygon directly and that has the same running time.

Cite as

Henk Alkema, Mark de Berg, Morteza Monemizadeh, and Leonidas Theocharous. TSP in a Simple Polygon. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 5:1-5:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{alkema_et_al:LIPIcs.ESA.2022.5,
  author =	{Alkema, Henk and de Berg, Mark and Monemizadeh, Morteza and Theocharous, Leonidas},
  title =	{{TSP in a Simple Polygon}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{5:1--5:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.5},
  URN =		{urn:nbn:de:0030-drops-169434},
  doi =		{10.4230/LIPIcs.ESA.2022.5},
  annote =	{Keywords: Traveling Salesman Problem, Subexponential algorithms, TSP with obstacles}
}
Document
Classical and Quantum Algorithms for Variants of Subset-Sum via Dynamic Programming

Authors: Jonathan Allcock, Yassine Hamoudi, Antoine Joux, Felix Klingelhöfer, and Miklos Santha

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Subset-Sum is an NP-complete problem where one must decide if a multiset of n integers contains a subset whose elements sum to a target value m. The best known classical and quantum algorithms run in time Õ(2^{n/2}) and Õ(2^{n/3}), respectively, based on the well-known meet-in-the-middle technique. Here we introduce a novel classical dynamic-programming-based data structure with applications to Subset-Sum and a number of variants, including Equal-Sums (where one seeks two disjoint subsets with the same sum), 2-Subset-Sum (a relaxed version of Subset-Sum where each item in the input set can be used twice in the summation), and Shifted-Sums, a generalization of both of these variants, where one seeks two disjoint subsets whose sums differ by some specified value. Given any modulus p, our data structure can be constructed in time O(np), after which queries can be made in time O(n) to the lists of subsets summing to any value modulo p. We use this data structure in combination with variable-time amplitude amplification and a new quantum pair finding algorithm, extending the quantum claw finding algorithm to the multiple solutions case, to give an O(2^{0.504n}) quantum algorithm for Shifted-Sums. This provides a notable improvement on the best known O(2^{0.773n}) classical running time established by Mucha et al. [Mucha et al., 2019]. We also study Pigeonhole Equal-Sums, a variant of Equal-Sums where the existence of a solution is guaranteed by the pigeonhole principle. For this problem we give faster classical and quantum algorithms with running time Õ(2^{n/2}) and Õ(2^{2n/5}), respectively.

Cite as

Jonathan Allcock, Yassine Hamoudi, Antoine Joux, Felix Klingelhöfer, and Miklos Santha. Classical and Quantum Algorithms for Variants of Subset-Sum via Dynamic Programming. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{allcock_et_al:LIPIcs.ESA.2022.6,
  author =	{Allcock, Jonathan and Hamoudi, Yassine and Joux, Antoine and Klingelh\"{o}fer, Felix and Santha, Miklos},
  title =	{{Classical and Quantum Algorithms for Variants of Subset-Sum via Dynamic Programming}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.6},
  URN =		{urn:nbn:de:0030-drops-169444},
  doi =		{10.4230/LIPIcs.ESA.2022.6},
  annote =	{Keywords: Quantum algorithm, classical algorithm, dynamic programming, representation technique, subset-sum, equal-sum, shifted-sum}
}
Document
Techniques for Generalized Colorful k-Center Problems

Authors: Georg Anegg, Laura Vargas Koch, and Rico Zenklusen

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Fair clustering enjoyed a surge of interest recently. One appealing way of integrating fairness aspects into classical clustering problems is by introducing multiple covering constraints. This is a natural generalization of the robust (or outlier) setting, which has been studied extensively and is amenable to a variety of classic algorithmic techniques. In contrast, for the case of multiple covering constraints (the so-called colorful setting), specialized techniques have only been developed recently for k-Center clustering variants, which is also the focus of this paper. While prior techniques assume covering constraints on the clients, they do not address additional constraints on the facilities, which has been extensively studied in non-colorful settings. In this paper, we present a quite versatile framework to deal with various constraints on the facilities in the colorful setting, by combining ideas from the iterative greedy procedure for Colorful k-Center by Inamdar and Varadarajan with new ingredients. To exemplify our framework, we show how it leads, for a constant number γ of colors, to the first constant-factor approximations for both Colorful Matroid Supplier with respect to a linear matroid and Colorful Knapsack Supplier. In both cases, we readily get an O(2^γ)-approximation. Moreover, for Colorful Knapsack Supplier, we show that it is possible to obtain constant approximation guarantees that are independent of the number of colors γ, as long as γ = O(1), which is needed to obtain a polynomial running time. More precisely, we obtain a 7-approximation by extending a technique recently introduced by Jia, Sheth, and Svensson for Colorful k-Center.

Cite as

Georg Anegg, Laura Vargas Koch, and Rico Zenklusen. Techniques for Generalized Colorful k-Center Problems. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 7:1-7:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{anegg_et_al:LIPIcs.ESA.2022.7,
  author =	{Anegg, Georg and Vargas Koch, Laura and Zenklusen, Rico},
  title =	{{Techniques for Generalized Colorful k-Center Problems}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{7:1--7:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.7},
  URN =		{urn:nbn:de:0030-drops-169458},
  doi =		{10.4230/LIPIcs.ESA.2022.7},
  annote =	{Keywords: Approximation Algorithms, Fair Clustering, Colorful k-Center}
}
Document
Simple Streaming Algorithms for Edge Coloring

Authors: Mohammad Ansari, Mohammad Saneian, and Hamid Zarrabi-Zadeh

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We revisit the classical edge coloring problem for general graphs in the streaming model. In this model, the input graph is presented as a stream of edges, and the algorithm must report colors assigned to the edges in a streaming fashion, using a memory of size O(n polylog n) on graphs of up to O(n²) edges. In ESA 2019 and SOSA 2021, two elegant randomized algorithms were presented for this problem in the adversarial edge arrival model, where the latest one colors any input graph using O(Δ²/s) colors with high probability in Õ(ns) space. In this short note, we propose two extremely simple streaming algorithms that achieve the same color and space bounds deterministically. Besides being surprisingly simple, our algorithms do not use randomness at all, and are very simple to analyze.

Cite as

Mohammad Ansari, Mohammad Saneian, and Hamid Zarrabi-Zadeh. Simple Streaming Algorithms for Edge Coloring. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 8:1-8:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ansari_et_al:LIPIcs.ESA.2022.8,
  author =	{Ansari, Mohammad and Saneian, Mohammad and Zarrabi-Zadeh, Hamid},
  title =	{{Simple Streaming Algorithms for Edge Coloring}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{8:1--8:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.8},
  URN =		{urn:nbn:de:0030-drops-169468},
  doi =		{10.4230/LIPIcs.ESA.2022.8},
  annote =	{Keywords: Edge coloring, streaming model, adversarial order}
}
Document
Computing Smallest Convex Intersecting Polygons

Authors: Antonios Antoniadis, Mark de Berg, Sándor Kisfaludi-Bak, and Antonis Skarlatos

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
A polygon C is an intersecting polygon for a set O of objects in ℝ² if C intersects each object in O, where the polygon includes its interior. We study the problem of computing the minimum-perimeter intersecting polygon and the minimum-area convex intersecting polygon for a given set O of objects. We present an FPTAS for both problems for the case where O is a set of possibly intersecting convex polygons in the plane of total complexity n. Furthermore, we present an exact polynomial-time algorithm for the minimum-perimeter intersecting polygon for the case where O is a set of n possibly intersecting segments in the plane. So far, polynomial-time exact algorithms were only known for the minimum perimeter intersecting polygon of lines or of disjoint segments.

Cite as

Antonios Antoniadis, Mark de Berg, Sándor Kisfaludi-Bak, and Antonis Skarlatos. Computing Smallest Convex Intersecting Polygons. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 9:1-9:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{antoniadis_et_al:LIPIcs.ESA.2022.9,
  author =	{Antoniadis, Antonios and de Berg, Mark and Kisfaludi-Bak, S\'{a}ndor and Skarlatos, Antonis},
  title =	{{Computing Smallest Convex Intersecting Polygons}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{9:1--9:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.9},
  URN =		{urn:nbn:de:0030-drops-169470},
  doi =		{10.4230/LIPIcs.ESA.2022.9},
  annote =	{Keywords: convex hull, imprecise points, computational geometry}
}
Document
The Price of Hierarchical Clustering

Authors: Anna Arutyunova and Heiko Röglin

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Hierarchical Clustering is a popular tool for understanding the hereditary properties of a data set. Such a clustering is actually a sequence of clusterings that starts with the trivial clustering in which every data point forms its own cluster and then successively merges two existing clusters until all points are in the same cluster. A hierarchical clustering achieves an approximation factor of α if the costs of each k-clustering in the hierarchy are at most α times the costs of an optimal k-clustering. We study as cost functions the maximum (discrete) radius of any cluster (k-center problem) and the maximum diameter of any cluster (k-diameter problem). In general, the optimal clusterings do not form a hierarchy and hence an approximation factor of 1 cannot be achieved. We call the smallest approximation factor that can be achieved for any instance the price of hierarchy. For the k-diameter problem we improve the upper bound on the price of hierarchy to 3+2√2≈ 5.83. Moreover we significantly improve the lower bounds for k-center and k-diameter, proving a price of hierarchy of exactly 4 and 3+2√2, respectively.

Cite as

Anna Arutyunova and Heiko Röglin. The Price of Hierarchical Clustering. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{arutyunova_et_al:LIPIcs.ESA.2022.10,
  author =	{Arutyunova, Anna and R\"{o}glin, Heiko},
  title =	{{The Price of Hierarchical Clustering}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.10},
  URN =		{urn:nbn:de:0030-drops-169487},
  doi =		{10.4230/LIPIcs.ESA.2022.10},
  annote =	{Keywords: Hierarchical Clustering, approximation Algorithms, k-center Problem}
}
Document
Bounding and Computing Obstacle Numbers of Graphs

Authors: Martin Balko, Steven Chaplick, Robert Ganian, Siddharth Gupta, Michael Hoffmann, Pavel Valtr, and Alexander Wolff

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
An obstacle representation of a graph G consists of a set of pairwise disjoint simply-connected closed regions and a one-to-one mapping of the vertices of G to points such that two vertices are adjacent in G if and only if the line segment connecting the two corresponding points does not intersect any obstacle. The obstacle number of a graph is the smallest number of obstacles in an obstacle representation of the graph in the plane such that all obstacles are simple polygons. It is known that the obstacle number of each n-vertex graph is O(n log n) [Balko, Cibulka, and Valtr, 2018] and that there are n-vertex graphs whose obstacle number is Ω(n/(log log n)²) [Dujmović and Morin, 2015]. We improve this lower bound to Ω(n/log log n) for simple polygons and to Ω(n) for convex polygons. To obtain these stronger bounds, we improve known estimates on the number of n-vertex graphs with bounded obstacle number, solving a conjecture by Dujmović and Morin. We also show that if the drawing of some n-vertex graph is given as part of the input, then for some drawings Ω(n²) obstacles are required to turn them into an obstacle representation of the graph. Our bounds are asymptotically tight in several instances. We complement these combinatorial bounds by two complexity results. First, we show that computing the obstacle number of a graph G is fixed-parameter tractable in the vertex cover number of G. Second, we show that, given a graph G and a simple polygon P, it is NP-hard to decide whether G admits an obstacle representation using P as the only obstacle.

Cite as

Martin Balko, Steven Chaplick, Robert Ganian, Siddharth Gupta, Michael Hoffmann, Pavel Valtr, and Alexander Wolff. Bounding and Computing Obstacle Numbers of Graphs. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 11:1-11:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{balko_et_al:LIPIcs.ESA.2022.11,
  author =	{Balko, Martin and Chaplick, Steven and Ganian, Robert and Gupta, Siddharth and Hoffmann, Michael and Valtr, Pavel and Wolff, Alexander},
  title =	{{Bounding and Computing Obstacle Numbers of Graphs}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{11:1--11:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.11},
  URN =		{urn:nbn:de:0030-drops-169495},
  doi =		{10.4230/LIPIcs.ESA.2022.11},
  annote =	{Keywords: Obstacle representation, Obstacle number, Visibility, NP-hardness, FPT}
}
  • Refine by Author
  • 13 Chechik, Shiri
  • 2 Abraham, Ittai
  • 2 Cohen, Sarel
  • 2 Feldman, Moran
  • 2 Filtser, Arnold
  • Show More...

  • Refine by Classification
  • 17 Theory of computation → Design and analysis of algorithms
  • 13 Theory of computation → Computational geometry
  • 11 Theory of computation → Parameterized complexity and exact algorithms
  • 10 Mathematics of computing → Graph algorithms
  • 10 Theory of computation → Graph algorithms analysis
  • Show More...

  • Refine by Keyword
  • 5 fixed-parameter tractability
  • 4 Approximation Algorithms
  • 4 approximation algorithms
  • 4 graph algorithms
  • 3 Clustering
  • Show More...

  • Refine by Type
  • 106 document
  • 1 volume

  • Refine by Publication Year
  • 95 2022
  • 3 2019
  • 2 2015
  • 2 2020
  • 1 2010
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail