125 Search Results for "Erd�s, P�ter L."


Document
Cluster Editing with Overlapping Communities

Authors: Emmanuel Arrighi, Matthias Bentert, Pål Grønås Drange, Blair D. Sullivan, and Petra Wolf

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
Cluster Editing, also known as correlation clustering, is a well-studied graph modification problem. In this problem, one is given a graph and allowed to perform up to k edge additions and deletions to transform it into a cluster graph, i.e., a graph consisting of a disjoint union of cliques. However, in real-world networks, clusters are often overlapping. For example, in social networks, a person might belong to several communities - e.g. those corresponding to work, school, or neighborhood. Another strong motivation comes from language networks where trying to cluster words with similar usage can be confounded by homonyms, that is, words with multiple meanings like "bat". The recently introduced operation of vertex splitting is one natural approach to incorporating such overlap into Cluster Editing. First used in the context of graph drawing, this operation allows a vertex v to be replaced by two vertices whose combined neighborhood is the neighborhood of v (and thus v can belong to more than one cluster). The problem of transforming a graph into a cluster graph using at most k edge additions, edge deletions, or vertex splits is called Cluster Editing with Vertex Splitting and is known to admit a polynomial kernel with respect to k and an O(9^{k²} + n + m)-time (parameterized) algorithm. However, it was not known whether the problem is NP-hard, a question which was originally asked by Abu-Khzam et al. [Combinatorial Optimization, 2018]. We answer this in the affirmative. We further give an improved algorithm running in O(2^{7klog k} + n + m) time.

Cite as

Emmanuel Arrighi, Matthias Bentert, Pål Grønås Drange, Blair D. Sullivan, and Petra Wolf. Cluster Editing with Overlapping Communities. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 2:1-2:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{arrighi_et_al:LIPIcs.IPEC.2023.2,
  author =	{Arrighi, Emmanuel and Bentert, Matthias and Drange, P\r{a}l Gr{\o}n\r{a}s and Sullivan, Blair D. and Wolf, Petra},
  title =	{{Cluster Editing with Overlapping Communities}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{2:1--2:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.2},
  URN =		{urn:nbn:de:0030-drops-194218},
  doi =		{10.4230/LIPIcs.IPEC.2023.2},
  annote =	{Keywords: graph modification, correlation clustering, vertex splitting, NP-hardness, parameterized algorithm}
}
Document
Computing Complexity Measures of Degenerate Graphs

Authors: Pål Grønås Drange, Patrick Greaves, Irene Muzi, and Felix Reidl

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
We show that the VC-dimension of a graph can be computed in time n^{⌈log d+1⌉} d^{O(d)}, where d is the degeneracy of the input graph. The core idea of our algorithm is a data structure to efficiently query the number of vertices that see a specific subset of vertices inside of a (small) query set. The construction of this data structure takes time O(d2^dn), afterwards queries can be computed efficiently using fast Möbius inversion. This data structure turns out to be useful for a range of tasks, especially for finding bipartite patterns in degenerate graphs, and we outline an efficient algorithm for counting the number of times specific patterns occur in a graph. The largest factor in the running time of this algorithm is O(n^c), where c is a parameter of the pattern we call its left covering number. Concrete applications of this algorithm include counting the number of (non-induced) bicliques in linear time, the number of co-matchings in quadratic time, as well as a constant-factor approximation of the ladder index in linear time. Finally, we supplement our theoretical results with several implementations and run experiments on more than 200 real-world datasets - the largest of which has 8 million edges - where we obtain interesting insights into the VC-dimension of real-world networks.

Cite as

Pål Grønås Drange, Patrick Greaves, Irene Muzi, and Felix Reidl. Computing Complexity Measures of Degenerate Graphs. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 14:1-14:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{drange_et_al:LIPIcs.IPEC.2023.14,
  author =	{Drange, P\r{a}l Gr{\o}n\r{a}s and Greaves, Patrick and Muzi, Irene and Reidl, Felix},
  title =	{{Computing Complexity Measures of Degenerate Graphs}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{14:1--14:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.14},
  URN =		{urn:nbn:de:0030-drops-194333},
  doi =		{10.4230/LIPIcs.IPEC.2023.14},
  annote =	{Keywords: vc-dimension, datastructure, degeneracy, enumerating}
}
Document
PACE Solver Description
PACE Solver Description: Zygosity

Authors: Emmanuel Arrighi, Pål Grønås Drange, Kenneth Langedal, Farhad Vadiee, Martin Vatshelle, and Petra Wolf

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
The graph parameter twin-width was recently introduced by Bonnet et al. Twin-width is a parameter that measures a graph’s similarity to a cograph, which is a graph that can be reduced to a single vertex by repeatedly contracting twins. This brief description introduces Zygosity, a heuristic for computing a low-width contraction sequence that achieved second place in the 2023 edition of Parameterized Algorithms and Computational Experiments Challenge (PACE). Zygosity starts by repeatedly contracting twins. Then, any attached trees are contracted down to a single pendant vertex. The remaining graph is then contracted using a randomized greedy algorithm.

Cite as

Emmanuel Arrighi, Pål Grønås Drange, Kenneth Langedal, Farhad Vadiee, Martin Vatshelle, and Petra Wolf. PACE Solver Description: Zygosity. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 39:1-39:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{arrighi_et_al:LIPIcs.IPEC.2023.39,
  author =	{Arrighi, Emmanuel and Drange, P\r{a}l Gr{\o}n\r{a}s and Langedal, Kenneth and Vadiee, Farhad and Vatshelle, Martin and Wolf, Petra},
  title =	{{PACE Solver Description: Zygosity}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{39:1--39:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.39},
  URN =		{urn:nbn:de:0030-drops-194583},
  doi =		{10.4230/LIPIcs.IPEC.2023.39},
  annote =	{Keywords: Twin-width, randomized greedy algorithm}
}
Document
Single-Exponential FPT Algorithms for Enumerating Secluded ℱ-Free Subgraphs and Deleting to Scattered Graph Classes

Authors: Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
The celebrated notion of important separators bounds the number of small (S,T)-separators in a graph which are "farthest from S" in a technical sense. In this paper, we introduce a generalization of this powerful algorithmic primitive, tailored to undirected graphs, that is phrased in terms of k-secluded vertex sets: sets with an open neighborhood of size at most k. In this terminology, the bound on important separators says that there are at most 4^k maximal k-secluded connected vertex sets C containing S but disjoint from T. We generalize this statement significantly: even when we demand that G[C] avoids a finite set ℱ of forbidden induced subgraphs, the number of such maximal subgraphs is 2^𝒪(k) and they can be enumerated efficiently. This enumeration algorithm allows us to make significant improvements for two problems from the literature. Our first application concerns the Connected k-Secluded ℱ-free subgraph problem, where ℱ is a finite set of forbidden induced subgraphs. Given a graph in which each vertex has a positive integer weight, the problem asks to find a maximum-weight connected k-secluded vertex set C ⊆ V(G) such that G[C] does not contain an induced subgraph isomorphic to any F ∈ ℱ. The parameterization by k is known to be solvable in triple-exponential time via the technique of recursive understanding, which we improve to single-exponential. Our second application concerns the deletion problem to scattered graph classes. A scattered graph class is defined by demanding that every connected component is contained in at least one of the prescribed graph classes Π_1, …, Π_d. The deletion problem to a scattered graph class is to find a vertex set of size at most k whose removal yields a graph from the class. We obtain a single-exponential algorithm whenever each class Π_i is characterized by a finite number of forbidden induced subgraphs. This generalizes and improves upon earlier results in the literature.

Cite as

Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk. Single-Exponential FPT Algorithms for Enumerating Secluded ℱ-Free Subgraphs and Deleting to Scattered Graph Classes. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 42:1-42:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{jansen_et_al:LIPIcs.ISAAC.2023.42,
  author =	{Jansen, Bart M. P. and de Kroon, Jari J. H. and W{\l}odarczyk, Micha{\l}},
  title =	{{Single-Exponential FPT Algorithms for Enumerating Secluded ℱ-Free Subgraphs and Deleting to Scattered Graph Classes}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{42:1--42:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.42},
  URN =		{urn:nbn:de:0030-drops-193440},
  doi =		{10.4230/LIPIcs.ISAAC.2023.42},
  annote =	{Keywords: fixed-parameter tractability, important separators, secluded subgraphs}
}
Document
Counting Computations with Formulae: Logical Characterisations of Counting Complexity Classes

Authors: Antonis Achilleos and Aggeliki Chalki

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We present quantitative logics with two-step semantics based on the framework of quantitative logics introduced by Arenas et al. (2020) and the two-step semantics defined in the context of weighted logics by Gastin & Monmege (2018). We show that some of the fragments of our logics augmented with a least fixed point operator capture interesting classes of counting problems. Specifically, we answer an open question in the area of descriptive complexity of counting problems by providing logical characterisations of two subclasses of #P, namely SpanL and TotP, that play a significant role in the study of approximable counting problems. Moreover, we define logics that capture FPSPACE and SpanPSPACE, which are counting versions of PSPACE.

Cite as

Antonis Achilleos and Aggeliki Chalki. Counting Computations with Formulae: Logical Characterisations of Counting Complexity Classes. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{achilleos_et_al:LIPIcs.MFCS.2023.7,
  author =	{Achilleos, Antonis and Chalki, Aggeliki},
  title =	{{Counting Computations with Formulae: Logical Characterisations of Counting Complexity Classes}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.7},
  URN =		{urn:nbn:de:0030-drops-185412},
  doi =		{10.4230/LIPIcs.MFCS.2023.7},
  annote =	{Keywords: descriptive complexity, quantitative logics, counting problems, #P}
}
Document
Formalizing Norm Extensions and Applications to Number Theory

Authors: María Inés de Frutos-Fernández

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
The field ℝ of real numbers is obtained from the rational numbers ℚ by taking the completion with respect to the usual absolute value. We then define the complex numbers ℂ as an algebraic closure of ℝ. The p-adic analogue of the real numbers is the field ℚ_p of p-adic numbers, obtained by completing ℚ with respect to the p-adic norm. In this paper, we formalize in Lean 3 the definition of the p-adic analogue of the complex numbers, which is the field ℂ_p of p-adic complex numbers, a field extension of ℚ_p which is both algebraically closed and complete with respect to the extension of the p-adic norm. More generally, given a field K complete with respect to a nonarchimedean real-valued norm, and an algebraic field extension L/K, we show that there is a unique norm on L extending the given norm on K, with an explicit description. Building on the definition of ℂ_p, we formalize the definition of the Fontaine period ring B_{HT} and discuss some applications to the theory of Galois representations and to p-adic Hodge theory. The results formalized in this paper are a prerequisite to formalize Local Class Field Theory, which is a fundamental ingredient of the proof of Fermat’s Last Theorem.

Cite as

María Inés de Frutos-Fernández. Formalizing Norm Extensions and Applications to Number Theory. In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{defrutosfernandez:LIPIcs.ITP.2023.13,
  author =	{de Frutos-Fern\'{a}ndez, Mar{\'\i}a In\'{e}s},
  title =	{{Formalizing Norm Extensions and Applications to Number Theory}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{13:1--13:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.13},
  URN =		{urn:nbn:de:0030-drops-183880},
  doi =		{10.4230/LIPIcs.ITP.2023.13},
  annote =	{Keywords: formal mathematics, Lean, mathlib, algebraic number theory, p-adic analysis, Galois representations, p-adic Hodge theory}
}
Document
Track A: Algorithms, Complexity and Games
Faster Submodular Maximization for Several Classes of Matroids

Authors: Monika Henzinger, Paul Liu, Jan Vondrák, and Da Wei Zheng

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
The maximization of submodular functions have found widespread application in areas such as machine learning, combinatorial optimization, and economics, where practitioners often wish to enforce various constraints; the matroid constraint has been investigated extensively due to its algorithmic properties and expressive power. Though tight approximation algorithms for general matroid constraints exist in theory, the running times of such algorithms typically scale quadratically, and are not practical for truly large scale settings. Recent progress has focused on fast algorithms for important classes of matroids given in explicit form. Currently, nearly-linear time algorithms only exist for graphic and partition matroids [Alina Ene and Huy L. Nguyen, 2019]. In this work, we develop algorithms for monotone submodular maximization constrained by graphic, transversal matroids, or laminar matroids in time near-linear in the size of their representation. Our algorithms achieve an optimal approximation of 1-1/e-ε and both generalize and accelerate the results of Ene and Nguyen [Alina Ene and Huy L. Nguyen, 2019]. In fact, the running time of our algorithm cannot be improved within the fast continuous greedy framework of Badanidiyuru and Vondrák [Ashwinkumar Badanidiyuru and Jan Vondrák, 2014]. To achieve near-linear running time, we make use of dynamic data structures that maintain bases with approximate maximum cardinality and weight under certain element updates. These data structures need to support a weight decrease operation and a novel Freeze operation that allows the algorithm to freeze elements (i.e. force to be contained) in its basis regardless of future data structure operations. For the laminar matroid, we present a new dynamic data structure using the top tree interface of Alstrup, Holm, de Lichtenberg, and Thorup [Stephen Alstrup et al., 2005] that maintains the maximum weight basis under insertions and deletions of elements in O(log n) time. This data structure needs to support certain subtree query and path update operations that are performed every insertion and deletion that are non-trivial to handle in conjunction. For the transversal matroid the Freeze operation corresponds to requiring the data structure to keep a certain set S of vertices matched, a property that we call S-stability. While there is a large body of work on dynamic matching algorithms, none are S-stable and maintain an approximate maximum weight matching under vertex updates. We give the first such algorithm for bipartite graphs with total running time linear (up to log factors) in the number of edges.

Cite as

Monika Henzinger, Paul Liu, Jan Vondrák, and Da Wei Zheng. Faster Submodular Maximization for Several Classes of Matroids. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 74:1-74:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.ICALP.2023.74,
  author =	{Henzinger, Monika and Liu, Paul and Vondr\'{a}k, Jan and Zheng, Da Wei},
  title =	{{Faster Submodular Maximization for Several Classes of Matroids}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{74:1--74:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.74},
  URN =		{urn:nbn:de:0030-drops-181267},
  doi =		{10.4230/LIPIcs.ICALP.2023.74},
  annote =	{Keywords: submodular optimization, dynamic data structures, matching algorithms}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Flipper Games for Monadically Stable Graph Classes

Authors: Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
A class of graphs C is monadically stable if for every unary expansion Ĉ of C, one cannot encode - using first-order transductions - arbitrarily long linear orders in graphs from C. It is known that nowhere dense graph classes are monadically stable; these include classes of bounded maximum degree and classes that exclude a fixed topological minor. On the other hand, monadic stability is a property expressed in purely model-theoretic terms that is also suited for capturing structure in dense graphs. In this work we provide a characterization of monadic stability in terms of the Flipper game: a game on a graph played by Flipper, who in each round can complement the edge relation between any pair of vertex subsets, and Localizer, who in each round is forced to restrict the game to a ball of bounded radius. This is an analog of the Splitter game, which characterizes nowhere dense classes of graphs (Grohe, Kreutzer, and Siebertz, J. ACM '17). We give two different proofs of our main result. The first proof is based on tools borrowed from model theory, and it exposes an additional property of monadically stable graph classes that is close in spirit to definability of types. Also, as a byproduct, we show that monadic stability for graph classes coincides with monadic stability of existential formulas with two free variables, and we provide another combinatorial characterization of monadic stability via forbidden patterns. The second proof relies on the recently introduced notion of flip-flatness (Dreier, Mählmann, Siebertz, and Toruńczyk, arXiv 2206.13765) and provides an efficient algorithm to compute Flipper’s moves in a winning strategy.

Cite as

Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk. Flipper Games for Monadically Stable Graph Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 128:1-128:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.ICALP.2023.128,
  author =	{Gajarsk\'{y}, Jakub and M\"{a}hlmann, Nikolas and McCarty, Rose and Ohlmann, Pierre and Pilipczuk, Micha{\l} and Przybyszewski, Wojciech and Siebertz, Sebastian and Soko{\l}owski, Marek and Toru\'{n}czyk, Szymon},
  title =	{{Flipper Games for Monadically Stable Graph Classes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{128:1--128:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.128},
  URN =		{urn:nbn:de:0030-drops-181804},
  doi =		{10.4230/LIPIcs.ICALP.2023.128},
  annote =	{Keywords: Stability theory, structural graph theory, games}
}
Document
Bond Percolation in Small-World Graphs with Power-Law Distribution

Authors: Luca Becchetti, Andrea Clementi, Francesco Pasquale, Luca Trevisan, and Isabella Ziccardi

Published in: LIPIcs, Volume 257, 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)


Abstract
Full-bond percolation with parameter p is the process in which, given a graph, for every edge independently, we keep the edge with probability p and delete it with probability 1-p. Bond percolation is studied in parallel computing and network science to understand the resilience of distributed systems to random link failure and the spread of information in networks through unreliable links. Moreover, the full-bond percolation is equivalent to the Reed-Frost process, a network version of SIR epidemic spreading. We consider one-dimensional power-law small-world graphs with parameter α obtained as the union of a cycle with additional long-range random edges: each pair of nodes {u,v} at distance L on the cycle is connected by a long-range edge {u,v}, with probability proportional to 1/L^α. Our analysis determines three phases for the percolation subgraph G_p of the small-world graph, depending on the value of α. - If α < 1, there is a p < 1 such that, with high probability, there are Ω(n) nodes that are reachable in G_p from one another in 𝒪(log n) hops; - If 1 < α < 2, there is a p < 1 such that, with high probability, there are Ω(n) nodes that are reachable in G_p from one another in log^{𝒪(1)}(n) hops; - If α > 2, for every p < 1, with high probability all connected components of G_p have size 𝒪(log n).

Cite as

Luca Becchetti, Andrea Clementi, Francesco Pasquale, Luca Trevisan, and Isabella Ziccardi. Bond Percolation in Small-World Graphs with Power-Law Distribution. In 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 257, pp. 3:1-3:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{becchetti_et_al:LIPIcs.SAND.2023.3,
  author =	{Becchetti, Luca and Clementi, Andrea and Pasquale, Francesco and Trevisan, Luca and Ziccardi, Isabella},
  title =	{{Bond Percolation in Small-World Graphs with Power-Law Distribution}},
  booktitle =	{2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)},
  pages =	{3:1--3:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-275-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{257},
  editor =	{Doty, David and Spirakis, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2023.3},
  URN =		{urn:nbn:de:0030-drops-179392},
  doi =		{10.4230/LIPIcs.SAND.2023.3},
  annote =	{Keywords: Information spreading, gossiping, epidemics, fault-tolerance, network self-organization and formation, complex systems, social and transportation networks}
}
Document
Parameterized Lower Bounds for Problems in P via Fine-Grained Cross-Compositions

Authors: Klaus Heeger, André Nichterlein, and Rolf Niedermeier

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
We provide a general framework to exclude parameterized running times of the form O(l^β + n^γ) for problems that have polynomial running time lower bounds under hypotheses from fine-grained complexity. Our framework is based on cross-compositions from parameterized complexity. We (conditionally) exclude running times of the form O(l^{γ/(γ-1) - ε} + n^γ) for any 1 < γ < 2 and ε > 0 for the following problems: - Longest Common (Increasing) Subsequence: Given two length-n strings over an alphabet Σ (over ℕ) and l ∈ ℕ, is there a common (increasing) subsequence of length l in both strings? - Discrete Fréchet Distance: Given two lists of n points each and k ∈ N, is the Fréchet distance of the lists at most k? Here l is the maximum number of points which one list is ahead of the other list in an optimum traversal. - Planar Motion Planning: Given a set of n non-intersecting axis-parallel line segment obstacles in the plane and a line segment robot (called rod), can the rod be moved to a specified target without touching any obstacles? Here l is the maximum number of segments any segment has in its vicinity. Moreover, we exclude running times O(l^{2γ/(γ-1) - ε} + n^γ) for any 1 < γ < 3 and ε > 0 for: - Negative Triangle: Given an edge-weighted graph with n vertices, is there a triangle whose sum of edge-weights is negative? Here l is the order of a maximum connected component. - Triangle Collection: Given a vertex-colored graph with n vertices, is there for each triple of colors a triangle whose vertices have these three colors? Here l is the order of a maximum connected component. - 2nd Shortest Path: Given an n-vertex edge-weighted digraph, vertices s and t, and k ∈ ℕ, has the second longest s-t-path length at most k? Here l is the directed feedback vertex set number. Except for 2nd Shortest Path all these running time bounds are tight, that is, algorithms with running time O(l^{γ/(γ-1)} + n^γ) for any 1 < γ < 2 and O(l^{2γ/(γ -1)} + n^γ) for any 1 < γ < 3, respectively, are known. Our running time lower bounds also imply lower bounds on kernelization algorithms for these problems.

Cite as

Klaus Heeger, André Nichterlein, and Rolf Niedermeier. Parameterized Lower Bounds for Problems in P via Fine-Grained Cross-Compositions. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 35:1-35:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{heeger_et_al:LIPIcs.STACS.2023.35,
  author =	{Heeger, Klaus and Nichterlein, Andr\'{e} and Niedermeier, Rolf},
  title =	{{Parameterized Lower Bounds for Problems in P via Fine-Grained Cross-Compositions}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{35:1--35:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.35},
  URN =		{urn:nbn:de:0030-drops-176876},
  doi =		{10.4230/LIPIcs.STACS.2023.35},
  annote =	{Keywords: FPT in P, Kernelization, Decomposition}
}
Document
Reconstructing Words Using Queries on Subwords or Factors

Authors: Gwenaël Richomme and Matthieu Rosenfeld

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
We study word reconstruction problems. Improving a previous result by P. Fleischmann, M. Lejeune, F. Manea, D. Nowotka and M. Rigo, we prove that, for any unknown word w of length n over an alphabet of cardinality k, w can be reconstructed from the number of occurrences as subwords (or scattered factors) of O(k²√{nlog₂(n)}) words. Two previous upper bounds obtained by S. S. Skiena and G. Sundaram are also slightly improved: one when considering information on the existence of subwords instead of on the numbers of their occurrences, and, the other when considering information on the existence of factors.

Cite as

Gwenaël Richomme and Matthieu Rosenfeld. Reconstructing Words Using Queries on Subwords or Factors. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 52:1-52:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{richomme_et_al:LIPIcs.STACS.2023.52,
  author =	{Richomme, Gwena\"{e}l and Rosenfeld, Matthieu},
  title =	{{Reconstructing Words Using Queries on Subwords or Factors}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{52:1--52:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.52},
  URN =		{urn:nbn:de:0030-drops-177041},
  doi =		{10.4230/LIPIcs.STACS.2023.52},
  annote =	{Keywords: Word reconstruction, Subwords, Factors}
}
Document
List Locally Surjective Homomorphisms in Hereditary Graph Classes

Authors: Pavel Dvořák, Tomáš Masařík, Jana Novotná, Monika Krawczyk, Paweł Rzążewski, and Aneta Żuk

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
A locally surjective homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H) that is surjective in the neighborhood of each vertex in G. In the list locally surjective homomorphism problem, denoted by LLSHom(H), the graph H is fixed and the instance consists of a graph G whose every vertex is equipped with a subset of V(H), called list. We ask for the existence of a locally surjective homomorphism from G to H, where every vertex of G is mapped to a vertex from its list. In this paper, we study the complexity of the LLSHom(H) problem in F-free graphs, i.e., graphs that exclude a fixed graph F as an induced subgraph. We aim to understand for which pairs (H,F) the problem can be solved in subexponential time. We show that for all graphs H, for which the problem is NP-hard in general graphs, it cannot be solved in subexponential time in F-free graphs for F being a bounded-degree forest, unless the ETH fails. The initial study reveals that a natural subfamily of bounded-degree forests F, that might lead to some tractability results, is the family 𝒮 consisting of forests whose every component has at most three leaves. In this case, we exhibit the following dichotomy theorem: besides the cases that are polynomial-time solvable in general graphs, the graphs H ∈ {P₃,C₄} are the only connected ones that allow for a subexponential-time algorithm in F-free graphs for every F ∈ 𝒮 (unless the ETH fails).

Cite as

Pavel Dvořák, Tomáš Masařík, Jana Novotná, Monika Krawczyk, Paweł Rzążewski, and Aneta Żuk. List Locally Surjective Homomorphisms in Hereditary Graph Classes. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 30:1-30:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dvorak_et_al:LIPIcs.ISAAC.2022.30,
  author =	{Dvo\v{r}\'{a}k, Pavel and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Novotn\'{a}, Jana and Krawczyk, Monika and Rz\k{a}\.{z}ewski, Pawe{\l} and \.{Z}uk, Aneta},
  title =	{{List Locally Surjective Homomorphisms in Hereditary Graph Classes}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{30:1--30:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.30},
  URN =		{urn:nbn:de:0030-drops-173154},
  doi =		{10.4230/LIPIcs.ISAAC.2022.30},
  annote =	{Keywords: Homomorphism, Hereditary graphs, Subexponential-time algorithms}
}
Document
Invited Talk
Concurrent Separation Logics: Logical Abstraction, Logical Atomicity and Environment Liveness Conditions (Invited Talk)

Authors: Philippa Gardner

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
Scalable verification for concurrent programs with shared memory is a long-standing, difficult problem. In 2004, O'Hearn and Brookes introduced concurrent separation logic to provide compositional reasoning about coarse-grained concurrent programs with synchronisation primitives (Gödel prize, 2016). In 2010, I introduced logical abstraction (the fiction of separation) to CSL, developing the CAP logic for reasoning about fine-grained concurrent programs in general and fine-grained lock algorithms in particular. In one logic, it was possible to provide two-sided specifications of concurrent operations, with formally verified implementations and clients. In 2014, I introduced logical atomicity (the fiction of atomicity) to concurrent separation logics, developing the TaDA logic to capture when individual operations behave atomically. Unlike CAP, where synchronisation primitives leak into the specifications, with TaDA the specifications are "just right" in that they provide more general atomic functions specifications to capture, for example, the full behaviour of lock operations. In 2021, I introduced environment liveness conditions to concurrent separation logics, developing the TaDA Live logic for reasoning compositionally about the termination of blocking fine-grained concurrent programs. The crucial challenge is how to deal with abstract atomic blocking: that is, abstract atomic operations that have blocking behaviour arising from busy-waiting patterns as found in, for example, fine-grained spin locks. The fundamental innovation is with the design of abstract specifications that capture this blocking behaviour as liveness assumptions on the environment. In this talk, I will explain this on-going journey in the wonderful world of concurrent separation logics. I will also explain why I have a bright green office chair in the corner of my office, patterned in gold lamé. Many thanks to my fabulous coauthors on concurrent separation logics: Thomas Dinsdale-Young, Emanuele D'Osualdo, Mike Dodds, Azadeh Farzan, Matthew Parkinson, Pedro da Rocha Pinto, Julian Sutherland, Viktor Vafeiadis and more. Suggested Reading: - Peter O'Hearn: Resources, Concurrency and Local Reasoning, Journal of Theoretical Computer Science, Festschrift for John C Reynolds 70th birthday, 2007. - Thomas Dinsdale-Young, Pedro da Rocha Pinto and Philippa Gardner: A Perspective on Specifying and Verifying Concurrent Modules, Journal of Logical and Algebraic Methods in Programming, 2018. - Emanuele D'Osualdo, Azadeh Farzan, Philippa Gardner and Julian Sutherland: TaDA Live: Compositional Reasoning for Termination of Fine-grained Concurrent Programs, ACM Transactions on Programming Languages and Systems (TOPLAS), 2021.

Cite as

Philippa Gardner. Concurrent Separation Logics: Logical Abstraction, Logical Atomicity and Environment Liveness Conditions (Invited Talk). In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gardner:LIPIcs.CONCUR.2022.2,
  author =	{Gardner, Philippa},
  title =	{{Concurrent Separation Logics: Logical Abstraction, Logical Atomicity and Environment Liveness Conditions}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.2},
  URN =		{urn:nbn:de:0030-drops-170659},
  doi =		{10.4230/LIPIcs.CONCUR.2022.2},
  annote =	{Keywords: Concurrent separation logic}
}
Document
Taming Graphs with No Large Creatures and Skinny Ladders

Authors: Jakub Gajarský, Lars Jaffke, Paloma T. Lima, Jana Novotná, Marcin Pilipczuk, Paweł Rzążewski, and Uéverton S. Souza

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We confirm a conjecture of Gartland and Lokshtanov [arXiv:2007.08761]: if for a hereditary graph class 𝒢 there exists a constant k such that no member of 𝒢 contains a k-creature as an induced subgraph or a k-skinny-ladder as an induced minor, then there exists a polynomial p such that every G ∈ 𝒢 contains at most p(|V(G)|) minimal separators. By a result of Fomin, Todinca, and Villanger [SIAM J. Comput. 2015] the latter entails the existence of polynomial-time algorithms for Maximum Weight Independent Set, Feedback Vertex Set and many other problems, when restricted to an input graph from 𝒢. Furthermore, as shown by Gartland and Lokshtanov, our result implies a full dichotomy of hereditary graph classes defined by a finite set of forbidden induced subgraphs into tame (admitting a polynomial bound of the number of minimal separators) and feral (containing infinitely many graphs with exponential number of minimal separators).

Cite as

Jakub Gajarský, Lars Jaffke, Paloma T. Lima, Jana Novotná, Marcin Pilipczuk, Paweł Rzążewski, and Uéverton S. Souza. Taming Graphs with No Large Creatures and Skinny Ladders. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 58:1-58:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.ESA.2022.58,
  author =	{Gajarsk\'{y}, Jakub and Jaffke, Lars and Lima, Paloma T. and Novotn\'{a}, Jana and Pilipczuk, Marcin and Rz\k{a}\.{z}ewski, Pawe{\l} and Souza, U\'{e}verton S.},
  title =	{{Taming Graphs with No Large Creatures and Skinny Ladders}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{58:1--58:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.58},
  URN =		{urn:nbn:de:0030-drops-169969},
  doi =		{10.4230/LIPIcs.ESA.2022.58},
  annote =	{Keywords: Minimal separator, hereditary graph class}
}
Document
Invited Talk
Equilibrium Computation, Deep Learning, and Multi-Agent Reinforcement Learning (Invited Talk)

Authors: Constantinos Daskalakis

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Machine Learning has recently made significant advances in challenges such as speech and image recognition, automatic translation, and text generation, much of that progress being fueled by the success of gradient descent-based optimization methods in computing local optima of non-convex objectives. From robustifying machine learning models against adversarial attacks to causal inference, training generative models, multi-robot interactions, and learning in strategic environments, many outstanding challenges in Machine Learning lie at its interface with Game Theory. On this front, however, gradient-descent based optimization methods have been less successful. Here, the role of single-objective optimization is played by equilibrium computation, but gradient-descent based methods commonly fail to find equilibria, and even computing local approximate equilibria has remained daunting. We shed light on these challenges through a combination of learning-theoretic, complexity-theoretic, game-theoretic and topological techniques, presenting obstacles and opportunities for Machine Learning and Game Theory going forward. I will assume no Deep Learning background for this talk and present results from joint works with S. Skoulakis and M. Zampetakis [Daskalakis et al., 2021] as well as with N. Golowich and K. Zhang [Daskalakis et al., 2022].

Cite as

Constantinos Daskalakis. Equilibrium Computation, Deep Learning, and Multi-Agent Reinforcement Learning (Invited Talk). In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{daskalakis:LIPIcs.ICALP.2022.2,
  author =	{Daskalakis, Constantinos},
  title =	{{Equilibrium Computation, Deep Learning, and Multi-Agent Reinforcement Learning}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.2},
  URN =		{urn:nbn:de:0030-drops-163431},
  doi =		{10.4230/LIPIcs.ICALP.2022.2},
  annote =	{Keywords: Deep Learning, Multi-Agent (Reinforcement) Learning, Game Theory, Nonconvex Optimization, PPAD}
}
  • Refine by Author
  • 6 Papp, Pál András
  • 6 Wattenhofer, Roger
  • 5 Drange, Pål Grønås
  • 5 Galanis, Andreas
  • 5 Pilipczuk, Michał
  • Show More...

  • Refine by Classification
  • 12 Mathematics of computing → Graph algorithms
  • 10 Theory of computation → Approximation algorithms analysis
  • 10 Theory of computation → Graph algorithms analysis
  • 8 Theory of computation → Parameterized complexity and exact algorithms
  • 7 Theory of computation → Pattern matching
  • Show More...

  • Refine by Keyword
  • 4 Minority process
  • 3 fixed-parameter tractability
  • 3 kernelization
  • 3 parameterized complexity
  • 2 Approximation Algorithms
  • Show More...

  • Refine by Type
  • 125 document

  • Refine by Publication Year
  • 31 2022
  • 17 2019
  • 15 2021
  • 12 2017
  • 12 2020
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail