4 Search Results for "Heckmann, Reinhold"


Document
Software Structure and WCET Predictability

Authors: Gernot Gebhard, Christoph Cullmann, and Reinhold Heckmann

Published in: OASIcs, Volume 18, Bringing Theory to Practice: Predictability and Performance in Embedded Systems (2011)


Abstract
Being able to compute worst-case execution time bounds for tasks of an embedded software system with hard real-time constraints is crucial to ensure the correct (timing) behavior of the overall system. Any means to increase the (static) time predictability of the embedded software are of high interest -- especially due to the ever-growing complexity of such software systems. In this paper we study existing coding proposals and guidelines, such as MISRA-C, and investigate whether they simplify static timing analysis. Furthermore, we investigate how additional knowledge, such as design-level information, can further aid in this process.

Cite as

Gernot Gebhard, Christoph Cullmann, and Reinhold Heckmann. Software Structure and WCET Predictability. In Bringing Theory to Practice: Predictability and Performance in Embedded Systems. Open Access Series in Informatics (OASIcs), Volume 18, pp. 1-10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{gebhard_et_al:OASIcs.PPES.2011.1,
  author =	{Gebhard, Gernot and Cullmann, Christoph and Heckmann, Reinhold},
  title =	{{Software Structure and WCET Predictability}},
  booktitle =	{Bringing Theory to Practice: Predictability and Performance in Embedded Systems},
  pages =	{1--10},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-28-6},
  ISSN =	{2190-6807},
  year =	{2011},
  volume =	{18},
  editor =	{Lucas, Philipp and Wilhelm, Reinhard},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.PPES.2011.1},
  URN =		{urn:nbn:de:0030-drops-30836},
  doi =		{10.4230/OASIcs.PPES.2011.1},
  annote =	{Keywords: WCET Predictability, Embedded Software Structure, Coding Guidelines}
}
Document
Computing the Worst Case Execution Time of an Avionics Program by Abstract Interpretation

Authors: Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Guillaume Borios, Victor Jégu, and Reinhold Heckmann

Published in: OASIcs, Volume 1, 5th International Workshop on Worst-Case Execution Time Analysis (WCET'05) (2007)


Abstract
This paper presents how the timing analyser aiT is used for computing the Worst-Case Execution Time (WCET) of two safety-critical avionics programs. The aiT tool has been developed by AbsInt GmbH as a static analyser based on Abstract Interpretation

Cite as

Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Guillaume Borios, Victor Jégu, and Reinhold Heckmann. Computing the Worst Case Execution Time of an Avionics Program by Abstract Interpretation. In 5th International Workshop on Worst-Case Execution Time Analysis (WCET'05). Open Access Series in Informatics (OASIcs), Volume 1, pp. 21-24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{souyris_et_al:OASIcs.WCET.2005.810,
  author =	{Souyris, Jean and Le Pavec, Erwan and Himbert, Guillaume and Borios, Guillaume and J\'{e}gu, Victor and Heckmann, Reinhold},
  title =	{{Computing the Worst Case Execution Time of an Avionics Program by Abstract Interpretation}},
  booktitle =	{5th International Workshop on Worst-Case Execution Time Analysis (WCET'05)},
  pages =	{21--24},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-24-8},
  ISSN =	{2190-6807},
  year =	{2008},
  volume =	{1},
  editor =	{Wilhelm, Reinhard},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2005.810},
  URN =		{urn:nbn:de:0030-drops-8103},
  doi =		{10.4230/OASIcs.WCET.2005.810},
  annote =	{Keywords: }
}
Document
Towards Formally Verifiable WCET Analysis for a Functional Programming Language

Authors: Kevin Hammond, Christian Ferdinand, Reinhold Heckmann, Roy Dyckhoff, Martin Hofman, Steffen Jost, Hans-Wolfgang Loidl, Greg Michaelson, Robert Pointon, Norman Scaife, Jocelyn Sérot, and Andy Wallace

Published in: OASIcs, Volume 4, 6th International Workshop on Worst-Case Execution Time Analysis (WCET'06) (2006)


Abstract
This paper describes ongoing work aimed at the construction of formal cost models and analyses to yield verifiable guarantees of resource usage in the context of real-time embedded systems. Our work is conducted in terms of the domain-specific language Hume, a language that combines functional programming for computations with finitestate automata for specifying reactive systems. We outline an approach in which high-level information derived from source-code analysis can be combined with worst-case execution time information obtained from high quality abstract interpretation of low-level binary code.

Cite as

Kevin Hammond, Christian Ferdinand, Reinhold Heckmann, Roy Dyckhoff, Martin Hofman, Steffen Jost, Hans-Wolfgang Loidl, Greg Michaelson, Robert Pointon, Norman Scaife, Jocelyn Sérot, and Andy Wallace. Towards Formally Verifiable WCET Analysis for a Functional Programming Language. In 6th International Workshop on Worst-Case Execution Time Analysis (WCET'06). Open Access Series in Informatics (OASIcs), Volume 4, pp. 1-6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{hammond_et_al:OASIcs.WCET.2006.677,
  author =	{Hammond, Kevin and Ferdinand, Christian and Heckmann, Reinhold and Dyckhoff, Roy and Hofman, Martin and Jost, Steffen and Loidl, Hans-Wolfgang and Michaelson, Greg and Pointon, Robert and Scaife, Norman and S\'{e}rot, Jocelyn and Wallace, Andy},
  title =	{{Towards Formally Verifiable WCET Analysis for a Functional Programming Language}},
  booktitle =	{6th International Workshop on Worst-Case Execution Time Analysis (WCET'06)},
  pages =	{1--6},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-03-3},
  ISSN =	{2190-6807},
  year =	{2006},
  volume =	{4},
  editor =	{Mueller, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2006.677},
  URN =		{urn:nbn:de:0030-drops-6773},
  doi =		{10.4230/OASIcs.WCET.2006.677},
  annote =	{Keywords: Worst-case execution time, functional programming, Hume, cost model, asynchronous, finite state machine}
}
Document
A Cartesian Closed Extension of the Category of Locales

Authors: Reinhold Heckmann

Published in: Dagstuhl Seminar Proceedings, Volume 4351, Spatial Representation: Discrete vs. Continuous Computational Models (2005)


Abstract
We present a Cartesian closed category ELOC of equilocales, which contains the category LOC of locales as a reflective full subcategory. The embedding of LOC into ELOC preserves products and all exponentials of exponentiable locales.

Cite as

Reinhold Heckmann. A Cartesian Closed Extension of the Category of Locales. In Spatial Representation: Discrete vs. Continuous Computational Models. Dagstuhl Seminar Proceedings, Volume 4351, pp. 1-20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005)


Copy BibTex To Clipboard

@InProceedings{heckmann:DagSemProc.04351.3,
  author =	{Heckmann, Reinhold},
  title =	{{A Cartesian Closed Extension of the Category of Locales}},
  booktitle =	{Spatial Representation: Discrete vs. Continuous Computational Models},
  pages =	{1--20},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2005},
  volume =	{4351},
  editor =	{Ralph Kopperman and Michael B. Smyth and Dieter Spreen and Julian Webster},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.04351.3},
  URN =		{urn:nbn:de:0030-drops-1339},
  doi =		{10.4230/DagSemProc.04351.3},
  annote =	{Keywords: Locale , Cartesian closed category}
}
  • Refine by Author
  • 4 Heckmann, Reinhold
  • 1 Borios, Guillaume
  • 1 Cullmann, Christoph
  • 1 Dyckhoff, Roy
  • 1 Ferdinand, Christian
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 1 Cartesian closed category
  • 1 Coding Guidelines
  • 1 Embedded Software Structure
  • 1 Hume
  • 1 Locale
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2005
  • 1 2006
  • 1 2008
  • 1 2011

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail