2 Search Results for "Jiang, Di"


Document
Invited Talk
Convex Optimization and Dynamic Data Structure (Invited Talk)

Authors: Yin Tat Lee

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
In the last three years, there are many breakthroughs in optimization such as nearly quadratic time algorithms for bipartite matching, linear programming algorithms that are as fast as Ax = b. All of these algorithms are based on a careful combination of optimization techniques and dynamic data structures. In this talk, we will explain the framework underlying all the recent breakthroughs. Joint work with Jan van den Brand, Michael B. Cohen, Sally Dong, Haotian Jiang, Tarun Kathuria, Danupon Nanongkai, Swati Padmanabhan, Richard Peng, Thatchaphol Saranurak, Aaron Sidford, Zhao Song, Di Wang, Sam Chiu-wai Wong, Guanghao Ye, Qiuyi Zhang.

Cite as

Yin Tat Lee. Convex Optimization and Dynamic Data Structure (Invited Talk). In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, p. 3:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{lee:LIPIcs.FSTTCS.2020.3,
  author =	{Lee, Yin Tat},
  title =	{{Convex Optimization and Dynamic Data Structure}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.3},
  URN =		{urn:nbn:de:0030-drops-132440},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.3},
  annote =	{Keywords: Convex Optimization, Dynamic Data Structure}
}
Document
Robustness of Boolean operations on subdivision-surface models

Authors: Di Jiang and Neil Stewart

Published in: Dagstuhl Seminar Proceedings, Volume 8021, Numerical Validation in Current Hardware Architectures (2008)


Abstract
This work was presented in two parts at Dagstuhl seminar 08021. The two presentations described work in progress, including a ``backward bound'' for a combined backward/forward error analysis for the problem mentioned in the title. We seek rigorous proofs that representations of computed sets, produced by algorithms to compute Boolean operations, are well formed, and that the algorithms are correct. Such proofs should eventually take account of the use of finite-precision arithmetic, although the proofs presented here do not. The representations studied are based on subdivision surfaces. Such representations are being used more and more frequently in place of trimmed NURBS representations, and the robustness analysis for these new representations is simpler than for trimmed NURBS. The particular subdivision-surface representation used is based on the Loop subdivision scheme. The analysis is broken into three parts. First, it is established that the input operands are well-formed two-dimensional manifolds without boundary. This can be done with existing methods. Secondly, we introduce the so-called ``limit mesh'', and view the limit meshes corresponding to the input sets as defining an approximate problem in the sense of a backward error analysis. The presentations mentioned above described a proof of the corresponding error bound. The third part of the analysis corresponds to the ``forward bound'': this remains to be done.

Cite as

Di Jiang and Neil Stewart. Robustness of Boolean operations on subdivision-surface models. In Numerical Validation in Current Hardware Architectures. Dagstuhl Seminar Proceedings, Volume 8021, pp. 1-10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{jiang_et_al:DagSemProc.08021.17,
  author =	{Jiang, Di and Stewart, Neil},
  title =	{{Robustness of Boolean operations on subdivision-surface models}},
  booktitle =	{Numerical Validation in Current Hardware Architectures},
  pages =	{1--10},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8021},
  editor =	{Annie Cuyt and Walter Kr\"{a}mer and Wolfram Luther and Peter Markstein},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.08021.17},
  URN =		{urn:nbn:de:0030-drops-14435},
  doi =		{10.4230/DagSemProc.08021.17},
  annote =	{Keywords: Robustness, finite-precision arithmetic, Boolean operations, subdivision surfaces}
}
  • Refine by Author
  • 1 Jiang, Di
  • 1 Lee, Yin Tat
  • 1 Stewart, Neil

  • Refine by Classification
  • 1 Mathematics of computing → Mathematical optimization

  • Refine by Keyword
  • 1 Boolean operations
  • 1 Convex Optimization
  • 1 Dynamic Data Structure
  • 1 Robustness
  • 1 finite-precision arithmetic
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2008
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail