173 Search Results for "K�nzi, Hans-Peter A."


Document
Decremental Sensitivity Oracles for Covering and Packing Minors

Authors: Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Peter Strulo

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In this paper, we present the first decremental fixed-parameter sensitivity oracles for a number of basic covering and packing problems on graphs. In particular, we obtain the first decremental sensitivity oracles for Vertex Planarization (delete k vertices to make the graph planar) and Cycle Packing (pack k vertex-disjoint cycles in the given graph). That is, we give a sensitivity oracle that preprocesses the given graph in time f(k,𝓁)n^{{O}(1)} such that, when given a set of 𝓁 edge deletions, the data structure decides in time f(k,𝓁) whether the updated graph is a positive instance of the problem. These results are obtained as a corollary of our central result, which is the first decremental sensitivity oracle for Topological Minor Deletion (cover all topological minors in the input graph that belong to a specified set, using k vertices). Though our methodology closely follows the literature, we are able to produce the first explicit bounds on the preprocessing and query times for several problems. We also initiate the study of fixed-parameter sensitivity oracles with so-called structural parameterizations and give sufficient conditions for the existence of fixed-parameter sensitivity oracles where the parameter is just the treewidth of the graph. In contrast, all existing literature on this topic and the aforementioned results in this paper assume a bound on the solution size (a weaker parameter than treewidth for many problems). As corollaries, we obtain decremental sensitivity oracles for well-studied problems such as Vertex Cover and Dominating Set when only the treewidth of the input graph is bounded. A feature of our methodology behind these results is that we are able to obtain query times independent of treewidth.

Cite as

Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Peter Strulo. Decremental Sensitivity Oracles for Covering and Packing Minors. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 44:1-44:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kanesh_et_al:LIPIcs.STACS.2024.44,
  author =	{Kanesh, Lawqueen and Panolan, Fahad and Ramanujan, M. S. and Strulo, Peter},
  title =	{{Decremental Sensitivity Oracles for Covering and Packing Minors}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{44:1--44:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.44},
  URN =		{urn:nbn:de:0030-drops-197544},
  doi =		{10.4230/LIPIcs.STACS.2024.44},
  annote =	{Keywords: Sensitivity oracles, Data Structures, FPT algorithms}
}
Document
Dynamic Maximal Matching in Clique Networks

Authors: Minming Li, Peter Robinson, and Xianbin Zhu

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We consider the problem of computing a maximal matching with a distributed algorithm in the presence of batch-dynamic changes to the graph topology. We assume that a graph of n nodes is vertex-partitioned among k players that communicate via message passing. Our goal is to provide an efficient algorithm that quickly updates the matching even if an adversary determines batches of 𝓁 edge insertions or deletions. We first show a lower bound of Ω((𝓁 log k)/(k²log n)) rounds for recomputing a matching assuming an oblivious adversary who is unaware of the initial (random) vertex partition as well as the current state of the players, and a stronger lower bound of Ω(𝓁/(klog n)) rounds against an adaptive adversary, who may choose any balanced (but not necessarily random) vertex partition initially and who knows the current state of the players. We also present a randomized algorithm that has an initialization time of O(n/(k log n)) rounds, while achieving an update time that that is independent of n: In more detail, the update time is O(⌈𝓁/k⌉ log k) against an oblivious adversary, who must fix all updates in advance. If we consider the stronger adaptive adversary, the update time becomes O (⌈𝓁/√k⌉ log k) rounds.

Cite as

Minming Li, Peter Robinson, and Xianbin Zhu. Dynamic Maximal Matching in Clique Networks. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 73:1-73:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ITCS.2024.73,
  author =	{Li, Minming and Robinson, Peter and Zhu, Xianbin},
  title =	{{Dynamic Maximal Matching in Clique Networks}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{73:1--73:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.73},
  URN =		{urn:nbn:de:0030-drops-196017},
  doi =		{10.4230/LIPIcs.ITCS.2024.73},
  annote =	{Keywords: distributed graph algorithm, dynamic network, maximal matching, randomized algorithm, lower bound}
}
Document
Parameterized Complexity Classification for Interval Constraints

Authors: Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Marcin Pilipczuk, and Roohani Sharma

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
Constraint satisfaction problems form a nicely behaved class of problems that lends itself to complexity classification results. From the point of view of parameterized complexity, a natural task is to classify the parameterized complexity of MinCSP problems parameterized by the number of unsatisfied constraints. In other words, we ask whether we can delete at most k constraints, where k is the parameter, to get a satisfiable instance. In this work, we take a step towards classifying the parameterized complexity for an important infinite-domain CSP: Allen’s interval algebra (IA). This CSP has closed intervals with rational endpoints as domain values and employs a set A of 13 basic comparison relations such as "precedes" or "during" for relating intervals. IA is a highly influential and well-studied formalism within AI and qualitative reasoning that has numerous applications in, for instance, planning, natural language processing and molecular biology. We provide an FPT vs. W[1]-hard dichotomy for MinCSP(Γ) for all Γ ⊆ A. IA is sometimes extended with unions of the relations in A or first-order definable relations over A, but extending our results to these cases would require first solving the parameterized complexity of Directed Symmetric Multicut, which is a notorious open problem. Already in this limited setting, we uncover connections to new variants of graph cut and separation problems. This includes hardness proofs for simultaneous cuts or feedback arc set problems in directed graphs, as well as new tractable cases with algorithms based on the recently introduced flow augmentation technique. Given the intractability of MinCSP(A) in general, we then consider (parameterized) approximation algorithms. We first show that MinCSP(A) cannot be polynomial-time approximated within any constant factor and continue by presenting a factor-2 fpt-approximation algorithm. Once again, this algorithm has its roots in flow augmentation.

Cite as

Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Marcin Pilipczuk, and Roohani Sharma. Parameterized Complexity Classification for Interval Constraints. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dabrowski_et_al:LIPIcs.IPEC.2023.11,
  author =	{Dabrowski, Konrad K. and Jonsson, Peter and Ordyniak, Sebastian and Osipov, George and Pilipczuk, Marcin and Sharma, Roohani},
  title =	{{Parameterized Complexity Classification for Interval Constraints}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.11},
  URN =		{urn:nbn:de:0030-drops-194306},
  doi =		{10.4230/LIPIcs.IPEC.2023.11},
  annote =	{Keywords: (minimum) constraint satisfaction problem, Allen’s interval algebra, parameterized complexity, cut problems}
}
Document
Invited Talk
Faithful Graph Drawing (Invited Talk)

Authors: Seok-Hee Hong

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
Graph drawing aims to compute good geometric representations of graphs in two or three dimensions. It has wide applications in network visualisation, such as social networks and biological networks, arising from many other disciplines. This talk will review fundamental theoretical results as well as recent advances in graph drawing, including symmetric graph drawing, generalisation of the Tutte’s barycenter theorem, Steinitz’s theorem, and Fáry’s theorem, and the so-called beyond planar graphs such as k-planar graphs. I will conclude my talk with recent progress in visualization of big complex graphs, including sublinear-time graph drawing algorithms and faithful graph drawing.

Cite as

Seok-Hee Hong. Faithful Graph Drawing (Invited Talk). In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hong:LIPIcs.ISAAC.2023.2,
  author =	{Hong, Seok-Hee},
  title =	{{Faithful Graph Drawing}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.2},
  URN =		{urn:nbn:de:0030-drops-193044},
  doi =		{10.4230/LIPIcs.ISAAC.2023.2},
  annote =	{Keywords: Graph drawing, Planar graphs, Beyond planar graphs, Tutte’s barycenter theorem, Steinitz’s theorem, F\'{a}ry’s theorem, Sublinear-time graph drawing algorithm, Faithful graph drawing, Symmetric graph drawing}
}
Document
Efficient Collaborative Tree Exploration with Breadth-First Depth-Next

Authors: Romain Cosson, Laurent Massoulié, and Laurent Viennot

Published in: LIPIcs, Volume 281, 37th International Symposium on Distributed Computing (DISC 2023)


Abstract
We study the problem of collaborative tree exploration introduced by Fraigniaud, Gasieniec, Kowalski, and Pelc [Pierre Fraigniaud et al., 2006] where a team of k agents is tasked to collectively go through all the edges of an unknown tree as fast as possible and return to the root. Denoting by n the total number of nodes and by D the tree depth, the 𝒪(n/log(k)+D) algorithm of [Pierre Fraigniaud et al., 2006] achieves a 𝒪(k/log(k)) competitive ratio with respect to the cost of offline exploration which is at least max{{2n/k,2D}}. Brass, Cabrera-Mora, Gasparri, and Xiao [Peter Brass et al., 2011] study an alternative performance criterion, the competitive overhead with respect to the cost of offline exploration, with their 2n/k+𝒪((D+k)^k) guarantee. In this paper, we introduce "Breadth-First Depth-Next" (BFDN), a novel and simple algorithm that performs collaborative tree exploration in 2n/k+𝒪(D²log(k)) rounds, thus outperforming [Peter Brass et al., 2011] for all values of (n,D,k) and being order-optimal for trees of depth D = o(√n). Our analysis relies on a two-player game reflecting a problem of online resource allocation that could be of independent interest. We extend the guarantees of BFDN to: scenarios with limited memory and communication, adversarial setups where robots can be blocked, and exploration of classes of non-tree graphs. Finally, we provide a recursive version of BFDN with a runtime of 𝒪_𝓁(n/k^{1/𝓁}+log(k) D^{1+1/𝓁}) for parameter 𝓁 ≥ 1, thereby improving performance for trees with large depth.

Cite as

Romain Cosson, Laurent Massoulié, and Laurent Viennot. Efficient Collaborative Tree Exploration with Breadth-First Depth-Next. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 14:1-14:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cosson_et_al:LIPIcs.DISC.2023.14,
  author =	{Cosson, Romain and Massouli\'{e}, Laurent and Viennot, Laurent},
  title =	{{Efficient Collaborative Tree Exploration with Breadth-First Depth-Next}},
  booktitle =	{37th International Symposium on Distributed Computing (DISC 2023)},
  pages =	{14:1--14:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-301-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{281},
  editor =	{Oshman, Rotem},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.14},
  URN =		{urn:nbn:de:0030-drops-191409},
  doi =		{10.4230/LIPIcs.DISC.2023.14},
  annote =	{Keywords: collaborative exploration, online algorithms, trees, adversarial game, competitive analysis, robot swarms}
}
Document
Distributed Sketching Lower Bounds for k-Edge Connected Spanning Subgraphs, BFS Trees, and LCL Problems

Authors: Peter Robinson

Published in: LIPIcs, Volume 281, 37th International Symposium on Distributed Computing (DISC 2023)


Abstract
We investigate graph problems in the distributed sketching model, where each node sends a single message to a referee who computes the output. We define a class of graphs and give a framework for proving lower bounds for certain embeddable problems, which leads to several new results: First, we present a tight lower bound of Ω(n) bits for the message size of computing a breadth-first search (BFS) tree. For locally-checkable labeling (LCL) problems, we show that verifying whether a given vertex labeling forms a weak 2-coloring requires messages of Ω(n^{1/3}log^{2/3}n) bits, and the same lower bound holds for verifying whether a subset of nodes forms a maximal independent set. We also prove that computing a k-edge connected spanning subgraph (k-ECSS) requires messages of size at least Ω(klog²(n/k)), which is tight up to a logarithmic factor. To show these results, we define a simultaneous multiparty (SMP) model of communication complexity, where the players obtain certain subgraphs as their input, and develop a generic embedding argument that allows us to prove lower bounds for the graph sketching model by using reductions from the SMP model. We point out that these results also extend to single-round algorithms in the broadcast congested clique. We also (nearly) settle the space complexity of the k-ECSS problem in the streaming model by extending the work of Kapralov, Nelson, Pachoki, Wang, and Woodruff (FOCS 2017): We prove a communication complexity lower bound for a direct sum variant of the UR^⊂_k problem and show that this implies Ω(k nlog²(n/k)) bits of memory for computing a k-ECSS. This is known to be optimal up to a logarithmic factor.

Cite as

Peter Robinson. Distributed Sketching Lower Bounds for k-Edge Connected Spanning Subgraphs, BFS Trees, and LCL Problems. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 32:1-32:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{robinson:LIPIcs.DISC.2023.32,
  author =	{Robinson, Peter},
  title =	{{Distributed Sketching Lower Bounds for k-Edge Connected Spanning Subgraphs, BFS Trees, and LCL Problems}},
  booktitle =	{37th International Symposium on Distributed Computing (DISC 2023)},
  pages =	{32:1--32:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-301-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{281},
  editor =	{Oshman, Rotem},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.32},
  URN =		{urn:nbn:de:0030-drops-191589},
  doi =		{10.4230/LIPIcs.DISC.2023.32},
  annote =	{Keywords: Distributed graph algorithm, graph sketching, streaming}
}
Document
Do You Need Instructions Again? Predicting Wayfinding Instruction Demand

Authors: Negar Alinaghi, Tiffany C. K. Kwok, Peter Kiefer, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
The demand for instructions during wayfinding, defined as the frequency of requesting instructions for each decision point, can be considered as an important indicator of the internal cognitive processes during wayfinding. This demand can be a consequence of the mental state of feeling lost, being uncertain, mind wandering, having difficulty following the route, etc. Therefore, it can be of great importance for theoretical cognitive studies on human perception of the environment. From an application perspective, this demand can be used as a measure of the effectiveness of the navigation assistance system. It is therefore worthwhile to be able to predict this demand and also to know what factors trigger it. This paper takes a step in this direction by reporting a successful prediction of instruction demand (accuracy of 78.4%) in a real-world wayfinding experiment with 45 participants, and interpreting the environmental, user, instructional, and gaze-related features that caused it.

Cite as

Negar Alinaghi, Tiffany C. K. Kwok, Peter Kiefer, and Ioannis Giannopoulos. Do You Need Instructions Again? Predicting Wayfinding Instruction Demand. In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 1:1-1:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{alinaghi_et_al:LIPIcs.GIScience.2023.1,
  author =	{Alinaghi, Negar and Kwok, Tiffany C. K. and Kiefer, Peter and Giannopoulos, Ioannis},
  title =	{{Do You Need Instructions Again? Predicting Wayfinding Instruction Demand}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{1:1--1:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.1},
  URN =		{urn:nbn:de:0030-drops-188963},
  doi =		{10.4230/LIPIcs.GIScience.2023.1},
  annote =	{Keywords: Wayfinding, Navigation Instructions, Urban Computing, Gaze Analysis}
}
Document
Short Paper
National-Scale Spatiotemporal Variation in Driver Navigation Behaviour and Route Choice (Short Paper)

Authors: Elliot Karikari, Manon Prédhumeau, Peter Baudains, and Ed Manley

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Understanding human behaviour is an integral task in GIScience, facilitated by increasingly large and descriptive datasets on human activity. Large-scale trajectory data have been particularly useful in measuring behaviours in different contexts, and understanding the relationship between the built environment and people. Yet, to date, most of these studies have focused on urban or regional scale analyses, with less exploration of behavioural variation at larger spatial scales. Human navigation behaviour is inherently linked to variation in spatial structure, and a study of national variations could help to better understand this variability. In this paper, we analyse GPS data from over 1 million journeys by 50,000 connected cars across the UK. Some key statistics relating to route choice are computed, and their variations are explored over time and space. A k-mean clustering of the trips identifies different types of trips and shows that their distribution varies by time of day and across the country. The insights gained from the data highlight spatio-temporal variations in road navigation, which should be considered in transportation modelling and planning.

Cite as

Elliot Karikari, Manon Prédhumeau, Peter Baudains, and Ed Manley. National-Scale Spatiotemporal Variation in Driver Navigation Behaviour and Route Choice (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 45:1-45:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{karikari_et_al:LIPIcs.GIScience.2023.45,
  author =	{Karikari, Elliot and Pr\'{e}dhumeau, Manon and Baudains, Peter and Manley, Ed},
  title =	{{National-Scale Spatiotemporal Variation in Driver Navigation Behaviour and Route Choice}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{45:1--45:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.45},
  URN =		{urn:nbn:de:0030-drops-189404},
  doi =		{10.4230/LIPIcs.GIScience.2023.45},
  annote =	{Keywords: Connected Car, Geospatial big Data, Navigation Behaviour, Cluster Analysis}
}
Document
APPROX
Oblivious Algorithms for the Max-kAND Problem

Authors: Noah G. Singer

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
Motivated by recent works on streaming algorithms for constraint satisfaction problems (CSPs), we define and analyze oblivious algorithms for the Max-kAND problem. This is a class of simple, combinatorial algorithms which round each variable with probability depending only on a quantity called the variable’s bias. Our definition generalizes a class of algorithms defined by Feige and Jozeph (Algorithmica '15) for Max-DICUT, a special case of Max-2AND. For each oblivious algorithm, we design a so-called factor-revealing linear program (LP) which captures its worst-case instance, generalizing one of Feige and Jozeph for Max-DICUT. Then, departing from their work, we perform a fully explicit analysis of these (infinitely many!) LPs. In particular, we show that for all k, oblivious algorithms for Max-kAND provably outperform a special subclass of algorithms we call "superoblivious" algorithms. Our result has implications for streaming algorithms: Generalizing the result for Max-DICUT of Saxena, Singer, Sudan, and Velusamy (SODA'23), we prove that certain separation results hold between streaming models for infinitely many CSPs: for every k, O(log n)-space sketching algorithms for Max-kAND known to be optimal in o(√n)-space can be beaten in (a) O(log n)-space under a random-ordering assumption, and (b) O(n^{1-1/k} D^{1/k}) space under a maximum-degree-D assumption. Even in the previously-known case of Max-DICUT, our analytic proof gives a fuller, computer-free picture of these separation results.

Cite as

Noah G. Singer. Oblivious Algorithms for the Max-kAND Problem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{singer:LIPIcs.APPROX/RANDOM.2023.15,
  author =	{Singer, Noah G.},
  title =	{{Oblivious Algorithms for the Max-kAND Problem}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{15:1--15:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.15},
  URN =		{urn:nbn:de:0030-drops-188409},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.15},
  annote =	{Keywords: streaming algorithm, approximation algorithm, constraint satisfaction problem (CSP), factor-revealing linear program}
}
Document
Pareto Sums of Pareto Sets

Authors: Demian Hespe, Peter Sanders, Sabine Storandt, and Carina Truschel

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
In bi-criteria optimization problems, the goal is typically to compute the set of Pareto-optimal solutions. Many algorithms for these types of problems rely on efficient merging or combining of partial solutions and filtering of dominated solutions in the resulting sets. In this paper, we consider the task of computing the Pareto sum of two given Pareto sets A, B of size n. The Pareto sum contains all non-dominated points of the Minkowski sum M = {a+b|a ∈ A, b ∈ B}. Since the Minkowski sum has a size of n², but the Pareto sum C can be much smaller, the goal is to compute C without having to compute and store all of M. We present several new algorithms for efficient Pareto sum computation, including an output-sensitive one with a running time of 𝒪(n log n + nk) and a space consumption of 𝒪(n+k) for k = |C|. We also describe suitable engineering techniques to improve the practical running times of our algorithms and provide a comparative experimental study. As one showcase application, we consider preprocessing-based methods for bi-criteria route planning in road networks. Pareto sum computation is a frequent task in the preprocessing phase. We show that using our algorithms with an output-sensitive space consumption allows to tackle larger instances and reduces the preprocessing time compared to algorithms that fully store M.

Cite as

Demian Hespe, Peter Sanders, Sabine Storandt, and Carina Truschel. Pareto Sums of Pareto Sets. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 60:1-60:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hespe_et_al:LIPIcs.ESA.2023.60,
  author =	{Hespe, Demian and Sanders, Peter and Storandt, Sabine and Truschel, Carina},
  title =	{{Pareto Sums of Pareto Sets}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{60:1--60:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.60},
  URN =		{urn:nbn:de:0030-drops-187132},
  doi =		{10.4230/LIPIcs.ESA.2023.60},
  annote =	{Keywords: Minkowski sum, Skyline, Successive Algorithm}
}
Document
Simultaneous Representation of Interval Graphs in the Sunflower Case

Authors: Ignaz Rutter and Peter Stumpf

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
A simultaneous representation of (vertex-labeled) graphs G_1,… ,G_k consists of a (geometric) intersection representation R_i for each graph G_i such that each vertex v is represented by the same geometric object in each R_i for which G_i contains v. While Jampani and Lubiw showed that the existence of simultaneous interval representations for k = 2 can be tested efficiently (2010), testing it for graphs where k is part of the input is NP-complete (Bok and Jedličková, 2018). An important special case of simultaneous representations is the sunflower case, where G_i ∩ G_j = (V(G_i)∩ V(G_j),E(G_i)∩ E(G_j)) is the same graph for each i ≠ j. We give an O(∑_{i=1}^k (|V(G_i)|+|E(G_i)|))-time algorithm for deciding the existence of a simultaneous interval representation for the sunflower case, even when k is part of the input. This answers an open question of Jampani and Lubiw.

Cite as

Ignaz Rutter and Peter Stumpf. Simultaneous Representation of Interval Graphs in the Sunflower Case. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 90:1-90:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{rutter_et_al:LIPIcs.ESA.2023.90,
  author =	{Rutter, Ignaz and Stumpf, Peter},
  title =	{{Simultaneous Representation of Interval Graphs in the Sunflower Case}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{90:1--90:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.90},
  URN =		{urn:nbn:de:0030-drops-187435},
  doi =		{10.4230/LIPIcs.ESA.2023.90},
  annote =	{Keywords: Interval Graphs, Sunflower Case, Simultaneous Representation, Recognition, Geometric Intersection Graphs}
}
Document
Recognizing H-Graphs - Beyond Circular-Arc Graphs

Authors: Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
In 1992 Biró, Hujter and Tuza introduced, for every fixed connected graph H, the class of H-graphs, defined as the intersection graphs of connected subgraphs of some subdivision of H. Such classes of graphs are related to many known graph classes: for example, K₂-graphs coincide with interval graphs, K₃-graphs with circular-arc graphs, the union of T-graphs, where T ranges over all trees, coincides with chordal graphs. Recently, quite a lot of research has been devoted to understanding the tractability border for various computational problems, such as recognition or isomorphism testing, in classes of H-graphs for different graphs H. In this work we undertake this research topic, focusing on the recognition problem. Chaplick, Töpfer, Voborník, and Zeman showed an XP-algorithm testing whether a given graph is a T-graph, where the parameter is the size of the tree T. In particular, for every fixed tree T the recognition of T-graphs can be solved in polynomial time. Tucker showed a polynomial time algorithm recognizing K₃-graphs (circular-arc graphs). On the other hand, Chaplick et al. showed also that for every fixed graph H containing two distinct cycles sharing an edge, the recognition of H-graphs is NP-hard. The main two results of this work narrow the gap between the NP-hard and 𝖯 cases of H-graph recognition. First, we show that the recognition of H-graphs is NP-hard when H contains two distinct cycles. On the other hand, we show a polynomial-time algorithm recognizing L-graphs, where L is a graph containing a cycle and an edge attached to it (which we call lollipop graphs). Our work leaves open the recognition problems of M-graphs for every unicyclic graph M different from a cycle and a lollipop.

Cite as

Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman. Recognizing H-Graphs - Beyond Circular-Arc Graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{agaoglucagirici_et_al:LIPIcs.MFCS.2023.8,
  author =	{A\u{g}ao\u{g}lu \c{C}a\u{g}{\i}r{\i}c{\i}, Deniz and \c{C}a\u{g}{\i}r{\i}c{\i}, Onur and Derbisz, Jan and Hartmann, Tim A. and Hlin\v{e}n\'{y}, Petr and Kratochv{\'\i}l, Jan and Krawczyk, Tomasz and Zeman, Peter},
  title =	{{Recognizing H-Graphs - Beyond Circular-Arc Graphs}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{8:1--8:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.8},
  URN =		{urn:nbn:de:0030-drops-185420},
  doi =		{10.4230/LIPIcs.MFCS.2023.8},
  annote =	{Keywords: H-graphs, Intersection Graphs, Helly Property}
}
Document
A Pseudonymization Prototype for Hungarian

Authors: Attila Novák and Borbála Novák

Published in: OASIcs, Volume 113, 12th Symposium on Languages, Applications and Technologies (SLATE 2023)


Abstract
In this paper, we present a pseudonymization prototype for Hungarian, an agglutinating language with complex morphology, implemented as a web service. The service provides the following functions: entity identification and extraction; automatic generation and selection of replacement candidates; automatic and consistent replacement and reinflection of entities in the final pseudonymized document. The named entity recognition model applied handles names of persons well, and it has decent performance on other entity types as well. However ID-like entities need to be handled separately to achieve proper performance (not handled in the current prototype version). For automatic replacement candidate generation, a simple entity embedding model is used. We discuss the performance and limitations of the prototype in detail.

Cite as

Attila Novák and Borbála Novák. A Pseudonymization Prototype for Hungarian. In 12th Symposium on Languages, Applications and Technologies (SLATE 2023). Open Access Series in Informatics (OASIcs), Volume 113, pp. 3:1-3:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{novak_et_al:OASIcs.SLATE.2023.3,
  author =	{Nov\'{a}k, Attila and Nov\'{a}k, Borb\'{a}la},
  title =	{{A Pseudonymization Prototype for Hungarian}},
  booktitle =	{12th Symposium on Languages, Applications and Technologies (SLATE 2023)},
  pages =	{3:1--3:10},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-291-4},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{113},
  editor =	{Sim\~{o}es, Alberto and Ber\'{o}n, Mario Marcelo and Portela, Filipe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.SLATE.2023.3},
  URN =		{urn:nbn:de:0030-drops-185177},
  doi =		{10.4230/OASIcs.SLATE.2023.3},
  annote =	{Keywords: named entity recognition, morphological reinflection, pseudonymization, entity embedding model}
}
Document
EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy Consumption of Embedded Applications

Authors: Simon Wegener, Kris K. Nikov, Jose Nunez-Yanez, and Kerstin Eder

Published in: OASIcs, Volume 114, 21th International Workshop on Worst-Case Execution Time Analysis (WCET 2023)


Abstract
This paper presents EnergyAnalyzer, a code-level static analysis tool for estimating the energy consumption of embedded software based on statically predictable hardware events. The tool utilises techniques usually used for worst-case execution time (WCET) analysis together with bespoke energy models developed for two predictable architectures - the ARM Cortex-M0 and the Gaisler LEON3 - to perform energy usage analysis. EnergyAnalyzer has been applied in various use cases, such as selecting candidates for an optimised convolutional neural network, analysing the energy consumption of a camera pill prototype, and analysing the energy consumption of satellite communications software. The tool was developed as part of a larger project called TeamPlay, which aimed to provide a toolchain for developing embedded applications where energy properties are first-class citizens, allowing the developer to reflect directly on these properties at the source code level. The analysis capabilities of EnergyAnalyzer are validated across a large number of benchmarks for the two target architectures and the results show that the statically estimated energy consumption has, with a few exceptions, less than 1% difference compared to the underlying empirical energy models which have been validated on real hardware.

Cite as

Simon Wegener, Kris K. Nikov, Jose Nunez-Yanez, and Kerstin Eder. EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy Consumption of Embedded Applications. In 21th International Workshop on Worst-Case Execution Time Analysis (WCET 2023). Open Access Series in Informatics (OASIcs), Volume 114, pp. 9:1-9:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{wegener_et_al:OASIcs.WCET.2023.9,
  author =	{Wegener, Simon and Nikov, Kris K. and Nunez-Yanez, Jose and Eder, Kerstin},
  title =	{{EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy Consumption of Embedded Applications}},
  booktitle =	{21th International Workshop on Worst-Case Execution Time Analysis (WCET 2023)},
  pages =	{9:1--9:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-293-8},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{114},
  editor =	{W\"{a}gemann, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2023.9},
  URN =		{urn:nbn:de:0030-drops-184380},
  doi =		{10.4230/OASIcs.WCET.2023.9},
  annote =	{Keywords: Energy Modelling, Static Analysis, Gaisler LEON3, ARM Cortex-M0}
}
Document
Efficient Yao Graph Construction

Authors: Daniel Funke and Peter Sanders

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
Yao graphs are geometric spanners that connect each point of a given point set to its nearest neighbor in each of k cones drawn around it. Yao graphs were introduced to construct minimum spanning trees in d dimensional spaces. Moreover, they are used for instance in topology control in wireless networks. An optimal 𝒪(n log n)-time algorithm to construct Yao graphs for a given point set has been proposed in the literature but - to the best of our knowledge - never been implemented. Instead, algorithms with a quadratic complexity are used in popular packages to construct these graphs. In this paper we present the first implementation of the optimal Yao graph algorithm. We engineer the data structures required to achieve the 𝒪(n log n) time bound and detail algorithmic adaptations necessary to take the original algorithm from theory to practice. We propose a priority queue data structure that separates static and dynamic events and might be of independent interest for other sweepline algorithms. Additionally, we propose a new Yao graph algorithm based on a uniform grid data structure that performs well for medium-sized inputs. We evaluate our implementations on a wide variety of synthetic and real-world datasets and show that our implementation outperforms current publicly available implementations by at least an order of magnitude.

Cite as

Daniel Funke and Peter Sanders. Efficient Yao Graph Construction. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{funke_et_al:LIPIcs.SEA.2023.20,
  author =	{Funke, Daniel and Sanders, Peter},
  title =	{{Efficient Yao Graph Construction}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.20},
  URN =		{urn:nbn:de:0030-drops-183706},
  doi =		{10.4230/LIPIcs.SEA.2023.20},
  annote =	{Keywords: computational geometry, geometric spanners, Yao graphs, sweepline algorithms, optimal algorithms}
}
  • Refine by Author
  • 6 Bodlaender, Hans L.
  • 6 König-Ries, Birgitta
  • 6 Sanders, Peter
  • 4 Paulusma, Daniël
  • 4 Rossmanith, Peter
  • Show More...

  • Refine by Classification
  • 20 Theory of computation → Graph algorithms analysis
  • 18 Theory of computation → Parameterized complexity and exact algorithms
  • 12 Mathematics of computing → Graph algorithms
  • 12 Theory of computation → Design and analysis of algorithms
  • 10 Mathematics of computing → Graph theory
  • Show More...

  • Refine by Keyword
  • 6 kernelization
  • 6 parameterized complexity
  • 4 approximation algorithm
  • 4 fixed-parameter tractability
  • 4 treewidth
  • Show More...

  • Refine by Type
  • 173 document

  • Refine by Publication Year
  • 38 2020
  • 32 2019
  • 22 2017
  • 15 2023
  • 11 2005
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail