45 Search Results for "Kannan, Ravi"


Volume

LIPIcs, Volume 4

IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

FSTTCS 2009, December 15-17, 2009, Kanpur, India

Editors: Ravi Kannan and K. Narayan Kumar

Document
Bit Complexity of Jordan Normal Form and Polynomial Spectral Factorization

Authors: Papri Dey, Ravi Kannan, Nick Ryder, and Nikhil Srivastava

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We study the bit complexity of two related fundamental computational problems in linear algebra and control theory. Our results are: (1) An Õ(n^{ω+3}a+n⁴a²+n^ωlog(1/ε)) time algorithm for finding an ε-approximation to the Jordan Normal form of an integer matrix with a-bit entries, where ω is the exponent of matrix multiplication. (2) An Õ(n⁶d⁶a+n⁴d⁴a²+n³d³log(1/ε)) time algorithm for ε-approximately computing the spectral factorization P(x) = Q^*(x)Q(x) of a given monic n× n rational matrix polynomial of degree 2d with rational a-bit coefficients having a-bit common denominators, which satisfies P(x)⪰0 for all real x. The first algorithm is used as a subroutine in the second one. Despite its being of central importance, polynomial complexity bounds were not previously known for spectral factorization, and for Jordan form the best previous best running time was an unspecified polynomial in n of degree at least twelve [Cai, 1994]. Our algorithms are simple and judiciously combine techniques from numerical and symbolic computation, yielding significant advantages over either approach by itself.

Cite as

Papri Dey, Ravi Kannan, Nick Ryder, and Nikhil Srivastava. Bit Complexity of Jordan Normal Form and Polynomial Spectral Factorization. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 42:1-42:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dey_et_al:LIPIcs.ITCS.2023.42,
  author =	{Dey, Papri and Kannan, Ravi and Ryder, Nick and Srivastava, Nikhil},
  title =	{{Bit Complexity of Jordan Normal Form and Polynomial Spectral Factorization}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{42:1--42:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.42},
  URN =		{urn:nbn:de:0030-drops-175450},
  doi =		{10.4230/LIPIcs.ITCS.2023.42},
  annote =	{Keywords: Symbolic algorithms, numerical algorithms, linear algebra}
}
Document
Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems with Logarithmic Dependence on the Dimension

Authors: Nai-Hui Chia, András Gilyén, Han-Hsuan Lin, Seth Lloyd, Ewin Tang, and Chunhao Wang

Published in: LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)


Abstract
We present two efficient classical analogues of the quantum matrix inversion algorithm [Harrow et al., 2009] for low-rank matrices. Inspired by recent work of Tang [Tang, 2019], assuming length-square sampling access to input data, we implement the pseudoinverse of a low-rank matrix allowing us to sample from the solution to the problem Ax = b using fast sampling techniques. We construct implicit descriptions of the pseudo-inverse by finding approximate singular value decomposition of A via subsampling, then inverting the singular values. In principle, our approaches can also be used to apply any desired "smooth" function to the singular values. Since many quantum algorithms can be expressed as a singular value transformation problem [András Gilyén et al., 2019], our results indicate that more low-rank quantum algorithms can be effectively "dequantised" into classical length-square sampling algorithms.

Cite as

Nai-Hui Chia, András Gilyén, Han-Hsuan Lin, Seth Lloyd, Ewin Tang, and Chunhao Wang. Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems with Logarithmic Dependence on the Dimension. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 47:1-47:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chia_et_al:LIPIcs.ISAAC.2020.47,
  author =	{Chia, Nai-Hui and Gily\'{e}n, Andr\'{a}s and Lin, Han-Hsuan and Lloyd, Seth and Tang, Ewin and Wang, Chunhao},
  title =	{{Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems with Logarithmic Dependence on the Dimension}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{47:1--47:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Cao, Yixin and Cheng, Siu-Wing and Li, Minming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.47},
  URN =		{urn:nbn:de:0030-drops-133916},
  doi =		{10.4230/LIPIcs.ISAAC.2020.47},
  annote =	{Keywords: sublinear algorithms, quantum-inspired, regression, importance sampling, quantum machine learning}
}
Document
Complete Volume
LIPIcs, Volume 4, FSTTCS'09, Complete Volume

Authors: Ravi Kannan and K. Narayan Kumar

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
LIPIcs, Volume 4, FSTTCS'09, Complete Volume

Cite as

IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@Proceedings{kannan_et_al:LIPIcs.FSTTCS.2009,
  title =	{{LIPIcs, Volume 4, FSTTCS'09, Complete Volume}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009},
  URN =		{urn:nbn:de:0030-drops-40987},
  doi =		{10.4230/LIPIcs.FSTTCS.2009},
  annote =	{Keywords: LIPIcs, Volume 4, FSTTCS'09, Complete Volume}
}
Document
Front Matter
Preface -- IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)

Authors: Ravi Kannan and K. Narayan Kumar

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
This volume contains the proceedings of the 29th international conference on the Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2009), organized under the auspices of the Indian Association for Research in Computing Science (IARCS) at the Indian Institute of Technology, Kanpur, India.

Cite as

IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. i-vii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{kannan_et_al:LIPIcs.FSTTCS.2009.2341,
  author =	{Kannan, Ravi and Narayan Kumar, K.},
  title =	{{Preface -- IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{i--vii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2341},
  URN =		{urn:nbn:de:0030-drops-23415},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2341},
  annote =	{Keywords: Preface, proceedings, FSTTCS, referees, programme committee, organising committee}
}
Document
Algorithms for Message Ferrying on Mobile ad hoc Networks

Authors: Mostafa Ammar, Deeparnab Chakrabarty, Atish Das Sarma, Subrahmanyam Kalyanasundaram, and Richard J. Lipton

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
Message Ferrying is a mobility assisted technique for working around the disconnectedness and sparsity of Mobile ad hoc networks. One of the importantquestions which arise in this context is to determine the routing of the ferry,so as to minimize the buffers used to store data at the nodes in thenetwork. We introduce a simple model to capture the ferry routingproblem. We characterize {\em stable} solutions of the system andprovide efficient approximation algorithms for the {\sc Min-Max Buffer Problem} for the case when the nodes are onhierarchically separated metric spaces.

Cite as

Mostafa Ammar, Deeparnab Chakrabarty, Atish Das Sarma, Subrahmanyam Kalyanasundaram, and Richard J. Lipton. Algorithms for Message Ferrying on Mobile ad hoc Networks. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 13-24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{ammar_et_al:LIPIcs.FSTTCS.2009.2303,
  author =	{Ammar, Mostafa and Chakrabarty, Deeparnab and Sarma, Atish Das and Kalyanasundaram, Subrahmanyam and Lipton, Richard J.},
  title =	{{Algorithms for Message Ferrying on Mobile ad hoc Networks}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{13--24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2303},
  URN =		{urn:nbn:de:0030-drops-23031},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2303},
  annote =	{Keywords: Algorithms, Network Algorithms, Routing, TSP, Buffer Optimization}
}
Document
Arithmetic Circuits and the Hadamard Product of Polynomials

Authors: Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
Motivated by the Hadamard product of matrices we define the Hadamard product of multivariate polynomials and study its arithmetic circuit and branching program complexity. We also give applications and connections to polynomial identity testing. Our main results are the following. \begin{itemize} \item[$\bullet$] We show that noncommutative polynomial identity testing for algebraic branching programs over rationals is complete for the logspace counting class $\ceql$, and over fields of characteristic $p$ the problem is in $\ModpL/\Poly$. \item[$\bullet$] We show an exponential lower bound for expressing the Raz-Yehudayoff polynomial as the Hadamard product of two monotone multilinear polynomials. In contrast the Permanent can be expressed as the Hadamard product of two monotone multilinear formulas of quadratic size. \end{itemize}

Cite as

Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. Arithmetic Circuits and the Hadamard Product of Polynomials. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 25-36, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{arvind_et_al:LIPIcs.FSTTCS.2009.2304,
  author =	{Arvind, Vikraman and Joglekar, Pushkar S. and Srinivasan, Srikanth},
  title =	{{Arithmetic Circuits and the Hadamard Product of Polynomials}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{25--36},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2304},
  URN =		{urn:nbn:de:0030-drops-23046},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2304},
  annote =	{Keywords: Hadamard product, identity testing, lower bounds, algebraic branching programs}
}
Document
Kernels for Feedback Arc Set In Tournaments

Authors: Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe Paul, Anthony Perez, Saket Saurabh, and Stéphan Thomassé

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
A tournament $T = (V,A)$ is a directed graph in which there is exactly one arc between every pair of distinct vertices. Given a digraph on $n$ vertices and an integer parameter $k$, the {\sc Feedback Arc Set} problem asks whether thegiven digraph has a set of $k$ arcs whose removal results in an acyclicdigraph. The {\sc Feedback Arc Set} problem restricted to tournaments is knownas the {\sc $k$-Feedback Arc Set in Tournaments ($k$-FAST)} problem. In thispaper we obtain a linear vertex kernel for \FAST{}. That is, we give apolynomial time algorithm which given an input instance $T$ to \FAST{} obtains an equivalent instance $T'$ on $O(k)$ vertices. In fact, given any fixed $\epsilon > 0$, the kernelized instance has at most $(2 + \epsilon)k$ vertices.Our result improves the previous known bound of $O(k^2)$ on the kernel size for\FAST{}. Our kernelization algorithm solves the problem on a subclass of tournaments in polynomial time and uses a known polynomial time approximation scheme for \FAST.

Cite as

Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe Paul, Anthony Perez, Saket Saurabh, and Stéphan Thomassé. Kernels for Feedback Arc Set In Tournaments. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 37-47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{bessy_et_al:LIPIcs.FSTTCS.2009.2305,
  author =	{Bessy, St\'{e}phane and Fomin, Fedor V. and Gaspers, Serge and Paul, Christophe and Perez, Anthony and Saurabh, Saket and Thomass\'{e}, St\'{e}phan},
  title =	{{Kernels for Feedback Arc Set In Tournaments}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{37--47},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2305},
  URN =		{urn:nbn:de:0030-drops-23055},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2305},
  annote =	{Keywords: Parameterized complexity, kernels, tournaments}
}
Document
On the Memory Consumption of Probabilistic Pushdown Automata

Authors: Tomas Brazdil, Javier Esparza, and Stefan Kiefer

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
We investigate the problem of evaluating memory consumption for systems modelled by probabilistic pushdown automata (pPDA). The space needed by a runof a pPDA is the maximal height reached by the stack during the run. Theproblem is motivated by the investigation of depth-first computations that playan important role for space-efficient schedulings of multithreaded programs. We study the computation of both the distribution of the memory consumption and its expectation. For the distribution, we show that a naive method incurs anexponential blow-up, and that it can be avoided using linear equation systems.We also suggest a possibly even faster approximation method.Given~$\varepsilon>0$, these methods allow to compute bounds on the memoryconsumption that are exceeded with a probability of at most~$\varepsilon$. For the expected memory consumption, we show that whether it is infinite can be decided in polynomial time for stateless pPDA (pBPA) and in polynomial space for pPDA. We also provide an iterative method for approximating theexpectation. We show how to compute error bounds of our approximation methodand analyze its convergence speed. We prove that our method convergeslinearly, i.e., the number of accurate bits of the approximation is a linear function of the number of iterations.

Cite as

Tomas Brazdil, Javier Esparza, and Stefan Kiefer. On the Memory Consumption of Probabilistic Pushdown Automata. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 49-60, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{brazdil_et_al:LIPIcs.FSTTCS.2009.2306,
  author =	{Brazdil, Tomas and Esparza, Javier and Kiefer, Stefan},
  title =	{{On the Memory Consumption of Probabilistic Pushdown Automata}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{49--60},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2306},
  URN =		{urn:nbn:de:0030-drops-23067},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2306},
  annote =	{Keywords: Pushdown automata, probabilistic systems, verification}
}
Document
Continuous-Time Stochastic Games with Time-Bounded Reachability

Authors: Tomas Brazdil, Vojtech Forejt, Jan Krcal, Jan Kretinsky, and Antonin Kucera

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
We study continuous-time stochastic games with time-bounded reachability objectives. We show that each vertex in such a game has a \emph{value} (i.e., an equilibrium probability), and we classify the conditions under which optimal strategies exist. Finally, we show how to compute optimal strategies in finite uniform games, and how to compute $\varepsilon$-optimal strategies in finitely-branching games with bounded rates (for finite games, we provide detailed complexity estimations).

Cite as

Tomas Brazdil, Vojtech Forejt, Jan Krcal, Jan Kretinsky, and Antonin Kucera. Continuous-Time Stochastic Games with Time-Bounded Reachability. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 61-72, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{brazdil_et_al:LIPIcs.FSTTCS.2009.2307,
  author =	{Brazdil, Tomas and Forejt, Vojtech and Krcal, Jan and Kretinsky, Jan and Kucera, Antonin},
  title =	{{Continuous-Time Stochastic Games with Time-Bounded Reachability}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{61--72},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2307},
  URN =		{urn:nbn:de:0030-drops-23077},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2307},
  annote =	{Keywords: Continuous time stochastic systems, time bounded reachability, stochastic games}
}
Document
Deterministic Automata and Extensions of Weak MSO

Authors: Mikolaj Bojanczyk and Szymon Torunczyk

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
We introduce a new class of automata on infinite words, called min-automata. We prove that min-automata have the same expressive power as weak monadic second-order logic (weak MSO) extended with a new quantifier, the recurrence quantifier. These results are dual to a framework presented in \cite{max-automata}, where max-automata were proved equivalent to weak MSO extended with an unbounding quantifier. We also present a general framework, which tries to explain which types of automata on infinite words correspond to extensions of weak MSO. As another example for the usefulness framework, apart from min- and max-automata, we define an extension of weak MSO with a quantifier that talks about ultimately periodic sets.

Cite as

Mikolaj Bojanczyk and Szymon Torunczyk. Deterministic Automata and Extensions of Weak MSO. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 73-84, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{bojanczyk_et_al:LIPIcs.FSTTCS.2009.2308,
  author =	{Bojanczyk, Mikolaj and Torunczyk, Szymon},
  title =	{{Deterministic Automata and Extensions of Weak MSO}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{73--84},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2308},
  URN =		{urn:nbn:de:0030-drops-23081},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2308},
  annote =	{Keywords: Deterministic automata, Weak MSO, min-automata, max-automata, BS-automata}
}
Document
On Timed Alternating Simulation for Concurrent Timed Games

Authors: Laura Bozzelli, Axel Legay, and Sophie Pinchinat

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
We address the problem of alternating simulation refinement for concurrent timed games (\TG). We show that checking timed alternating simulation between\TG is \EXPTIME-complete, and provide a logical characterization of thispreorder in terms of a meaningful fragment of a new logic, \TAMTLSTAR.\TAMTLSTAR is an action-based timed extension of standard alternating-timetemporal logic \ATLSTAR, which allows to quantify on strategies where thedesignated player is not responsible for blocking time. While for full \TAMTLSTAR, model-checking \TG is undecidable, we show that for its fragment \TAMTL, corresponding to the timed version of \ATL, in \EXPTIME.

Cite as

Laura Bozzelli, Axel Legay, and Sophie Pinchinat. On Timed Alternating Simulation for Concurrent Timed Games. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 85-96, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{bozzelli_et_al:LIPIcs.FSTTCS.2009.2309,
  author =	{Bozzelli, Laura and Legay, Axel and Pinchinat, Sophie},
  title =	{{On Timed Alternating Simulation for Concurrent Timed Games}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{85--96},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2309},
  URN =		{urn:nbn:de:0030-drops-23092},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2309},
  annote =	{Keywords: Concurrent Timed Games, Timed Alternating Simulation, Timed Alternating Temporal Logics}
}
Document
Covering of ordinals

Authors: Laurent Braud

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
The paper focuses on the structure of fundamental sequences of ordinals smaller than $\e$. A first result is the construction of a monadic second-order formula identifying a given structure, whereas such a formula cannot exist for ordinals themselves. The structures are precisely classified in the pushdown hierarchy. Ordinals are also located in the hierarchy, and a direct presentation is given.

Cite as

Laurent Braud. Covering of ordinals. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 97-108, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{braud:LIPIcs.FSTTCS.2009.2310,
  author =	{Braud, Laurent},
  title =	{{Covering of ordinals}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{97--108},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2310},
  URN =		{urn:nbn:de:0030-drops-23108},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2310},
  annote =	{Keywords: Ordinal theory, pushdown hierarchy, fundamental sequence, monadic second-order logic, prefix-recognizable graphs}
}
Document
Fractional Pebbling and Thrifty Branching Programs

Authors: Mark Braverman, Stephen Cook, Pierre McKenzie, Rahul Santhanam, and Dustin Wehr

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
We study the branching program complexity of the {\em tree evaluation problem}, introduced in \cite{BrCoMcSaWe09} as a candidate for separating \nl\ from\logcfl. The input to the problem is a rooted, balanced $d$-ary tree of height$h$, whose internal nodes are labelled with $d$-ary functions on$[k]=\{1,\ldots,k\}$, and whose leaves are labelled with elements of $[k]$.Each node obtains a value in $[k]$ equal to its $d$-ary function applied to the values of its $d$ children. The output is the value of the root. Deterministic $k$-way branching programs as related to black pebbling algorithms have been studied in \cite{BrCoMcSaWe09}. Here we introduce the notion of {\em fractional pebbling} of graphs to study non-deterministicbranching program size. We prove that this yields non-deterministic branching programs with $\Theta(k^{h/2+1})$ states solving the Boolean problem ``determine whether the root has value 1'' for binary trees - this isasymptotically better than the branching program size corresponding toblack-white pebbling. We prove upper and lower bounds on the fractionalpebbling number of $d$-ary trees, as well as a general result relating thefractional pebbling number of a graph to the black-white pebbling number. We introduce a simple semantic restriction called {\em thrifty} on $k$-way branching programs solving tree evaluation problems and show that the branchingprogram size bound of $\Theta(k^h)$ is tight (up to a constant factor) for all $h\ge 2$ for deterministic thrifty programs. We show that thenon-deterministic branching programs that correspond to fractional pebbling are thrifty as well, and that the bound of $\Theta(k^{h/2+1})$ is tight for non-deterministic thrifty programs for $h=2,3,4$. We hypothesise that thrifty branching programs are optimal among $k$-way branching programs solving the tree evaluation problem - proving this for deterministic programs would separate \lspace\ from \logcfl\, and proving it for non-deterministic programs would separate \nl\ from \logcfl.

Cite as

Mark Braverman, Stephen Cook, Pierre McKenzie, Rahul Santhanam, and Dustin Wehr. Fractional Pebbling and Thrifty Branching Programs. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 109-120, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{braverman_et_al:LIPIcs.FSTTCS.2009.2311,
  author =	{Braverman, Mark and Cook, Stephen and McKenzie, Pierre and Santhanam, Rahul and Wehr, Dustin},
  title =	{{Fractional Pebbling and Thrifty Branching Programs}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{109--120},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2311},
  URN =		{urn:nbn:de:0030-drops-23111},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2311},
  annote =	{Keywords: Branching programs, space complexity, tree evaluation, pebbling}
}
Document
The Wadge Hierarchy of Max-Regular Languages

Authors: Jérémie Cabessa, Jacques Duparc, Alessandro Facchini, and Filip Murlak

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
Recently, Miko{\l}aj Boja{\'n}czyk introduced a class of max-regular languages, an extension of regular languages of infinite words preserving manyof its usual properties. This new class can be seen as a different way of generalising the notion of regularity from finite to infinite words. This paper compares regular and max-regular languages in terms of topological complexity.It is proved that up to Wadge equivalence the classes coincide. Moreover, when restricted to $\mathbf{\Delta}^0_2$-languages, the classes contain virtually the same languages. On the other hand, separating examples of arbitrary complexity exceeding $\mathbf{\Delta}^0_2$ are constructed.

Cite as

Jérémie Cabessa, Jacques Duparc, Alessandro Facchini, and Filip Murlak. The Wadge Hierarchy of Max-Regular Languages. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 121-132, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{cabessa_et_al:LIPIcs.FSTTCS.2009.2312,
  author =	{Cabessa, J\'{e}r\'{e}mie and Duparc, Jacques and Facchini, Alessandro and Murlak, Filip},
  title =	{{The Wadge Hierarchy of Max-Regular Languages}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{121--132},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2312},
  URN =		{urn:nbn:de:0030-drops-23122},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2312},
  annote =	{Keywords: Max-regular languages, Wadge hierarchy, Wagner hierarchy}
}
  • Refine by Author
  • 4 Kannan, Ravi
  • 2 Brazdil, Tomas
  • 2 Dawar, Anuj
  • 2 Fomin, Fedor V.
  • 2 Khandekar, Rohit
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Numerical analysis
  • 1 Theory of computation → Sketching and sampling

  • Refine by Keyword
  • 2 Buchi Automata
  • 2 Petri nets
  • 2 monadic second-order logic
  • 1 #P-complete
  • 1 Abstraction preorder
  • Show More...

  • Refine by Type
  • 44 document
  • 1 volume

  • Refine by Publication Year
  • 41 2009
  • 1 2008
  • 1 2013
  • 1 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail