152 Search Results for "M�llensiefen, Daniel"


Document
Decision-Making Techniques for Smart Semiconductor Manufacturing (Dagstuhl Seminar 23362)

Authors: Hans Ehm, John Fowler, Lars Mönch, and Daniel Schorn

Published in: Dagstuhl Reports, Volume 13, Issue 9 (2024)


Abstract
In September 2023 the Dagstuhl Seminar 23362 explored the needs of the semiconductor industry for novel decision-making techniques and the related information systems to empower flexible decisions for smart production. The seminar participants also spent time identifying requirements for a simulation testbed which allows for assessing smart planning and control decisions in the semiconductor industry. The Executive Summary describes the process of the seminar and discusses key findings and areas for future research regarding these topics. Abstracts of presentations given during the seminar and the output of breakout sessions are collected in further sections.

Cite as

Hans Ehm, John Fowler, Lars Mönch, and Daniel Schorn. Decision-Making Techniques for Smart Semiconductor Manufacturing (Dagstuhl Seminar 23362). In Dagstuhl Reports, Volume 13, Issue 9, pp. 69-102, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{ehm_et_al:DagRep.13.9.69,
  author =	{Ehm, Hans and Fowler, John and M\"{o}nch, Lars and Schorn, Daniel},
  title =	{{Decision-Making Techniques for Smart Semiconductor Manufacturing (Dagstuhl Seminar 23362)}},
  pages =	{69--102},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{9},
  editor =	{Ehm, Hans and Fowler, John and M\"{o}nch, Lars and Schorn, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.9.69},
  URN =		{urn:nbn:de:0030-drops-198216},
  doi =		{10.4230/DagRep.13.9.69},
  annote =	{Keywords: analytics, modeling, semiconductor manufacturing, simulation, smart manufacturing}
}
Document
An Improved Approximation Algorithm for Dynamic Minimum Linear Arrangement

Authors: Marcin Bienkowski and Guy Even

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The dynamic offline linear arrangement problem deals with reordering n elements subject to a sequence of edge requests. The input consists of a sequence of m edges (i.e., unordered pairs of elements). The output is a sequence of permutations (i.e., bijective mapping of the elements to n equidistant points). In step t, the order of the elements is changed to the t-th permutation, and then the t-th request is served. The cost of the output consists of two parts per step: request cost and rearrangement cost. The former is the current distance between the endpoints of the request, while the latter is proportional to the number of adjacent element swaps required to move from one permutation to the consecutive permutation. The goal is to find a minimum cost solution. We present a deterministic O(log n log log n)-approximation algorithm for this problem, improving over a randomized O(log² n)-approximation by Olver et al. [Neil Olver et al., 2018]. Our algorithm is based on first solving spreading-metric LP relaxation on a time-expanded graph, applying a tree decomposition on the basis of the LP solution, and finally converting the tree decomposition to a sequence of permutations. The techniques we employ are general and have the potential to be useful for other dynamic graph optimization problems.

Cite as

Marcin Bienkowski and Guy Even. An Improved Approximation Algorithm for Dynamic Minimum Linear Arrangement. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bienkowski_et_al:LIPIcs.STACS.2024.15,
  author =	{Bienkowski, Marcin and Even, Guy},
  title =	{{An Improved Approximation Algorithm for Dynamic Minimum Linear Arrangement}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{15:1--15:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.15},
  URN =		{urn:nbn:de:0030-drops-197252},
  doi =		{10.4230/LIPIcs.STACS.2024.15},
  annote =	{Keywords: Minimum Linear Arrangement, dynamic Variant, Optimization Problems, Graph Problems, approximation Algorithms}
}
Document
Spectral Approach to the Communication Complexity of Multi-Party Key Agreement

Authors: Geoffroy Caillat-Grenier and Andrei Romashchenko

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We propose a linear algebraic method, rooted in the spectral properties of graphs, that can be used to prove lower bounds in communication complexity. Our proof technique effectively marries spectral bounds with information-theoretic inequalities. The key insight is the observation that, in specific settings, even when data sets X and Y are closely correlated and have high mutual information, the owner of X cannot convey a reasonably short message that maintains substantial mutual information with Y. In essence, from the perspective of the owner of Y, any sufficiently brief message m = m(X) would appear nearly indistinguishable from a random bit sequence. We employ this argument in several problems of communication complexity. Our main result concerns cryptographic protocols. We establish a lower bound for communication complexity of multi-party secret key agreement with unconditional, i.e., information-theoretic security. Specifically, for one-round protocols (simultaneous messages model) of secret key agreement with three participants we obtain an asymptotically tight lower bound. This bound implies optimality of the previously known omniscience communication protocol (this result applies to a non-interactive secret key agreement with three parties and input data sets with an arbitrary symmetric information profile). We consider communication problems in one-shot scenarios when the parties inputs are not produced by any i.i.d. sources, and there are no ergodicity assumptions on the input data. In this setting, we found it natural to present our results using the framework of Kolmogorov complexity.

Cite as

Geoffroy Caillat-Grenier and Andrei Romashchenko. Spectral Approach to the Communication Complexity of Multi-Party Key Agreement. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 22:1-22:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{caillatgrenier_et_al:LIPIcs.STACS.2024.22,
  author =	{Caillat-Grenier, Geoffroy and Romashchenko, Andrei},
  title =	{{Spectral Approach to the Communication Complexity of Multi-Party Key Agreement}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.22},
  URN =		{urn:nbn:de:0030-drops-197323},
  doi =		{10.4230/LIPIcs.STACS.2024.22},
  annote =	{Keywords: communication complexity, Kolmogorov complexity, information-theoretic cryptography, multiparty secret key agreement, expander mixing lemma, information inequalities}
}
Document
Fault-tolerant k-Supplier with Outliers

Authors: Deeparnab Chakrabarty, Luc Cote, and Ankita Sarkar

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We present approximation algorithms for the Fault-tolerant k-Supplier with Outliers (FkSO) problem. This is a common generalization of two known problems - k-Supplier with Outliers, and Fault-tolerant k-Supplier - each of which generalize the well-known k-Supplier problem. In the k-Supplier problem the goal is to serve n clients C, by opening k facilities from a set of possible facilities F; the objective function is the farthest that any client must travel to access an open facility. In FkSO, each client v has a fault-tolerance 𝓁_v, and now desires 𝓁_v facilities to serve it; so each client v’s contribution to the objective function is now its distance to the 𝓁_v^th closest open facility. Furthermore, we are allowed to choose m clients that we will serve, and only those clients contribute to the objective function, while the remaining n-m are considered outliers. Our main result is a (4t-1)-approximation for the FkSO problem, where t is the number of distinct values of 𝓁_v that appear in the instance. At t = 1, i.e. in the case where the 𝓁_v’s are uniformly some 𝓁, this yields a 3-approximation, improving upon the 11-approximation given for the uniform case by Inamdar and Varadarajan [2020], who also introduced the problem. Our result for the uniform case matches tight 3-approximations that exist for k-Supplier, k-Supplier with Outliers, and Fault-tolerant k-Supplier. Our key technical contribution is an application of the round-or-cut schema to FkSO. Guided by an LP relaxation, we reduce to a simpler optimization problem, which we can solve to obtain distance bounds for the "round" step, and valid inequalities for the "cut" step. By varying how we reduce to the simpler problem, we get varying distance bounds - we include a variant that gives a (2^t + 1)-approximation, which is better for t ∈ {2,3}. In addition, for t = 1, we give a more straightforward application of round-or-cut, yielding a 3-approximation that is much simpler than our general algorithm.

Cite as

Deeparnab Chakrabarty, Luc Cote, and Ankita Sarkar. Fault-tolerant k-Supplier with Outliers. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 23:1-23:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chakrabarty_et_al:LIPIcs.STACS.2024.23,
  author =	{Chakrabarty, Deeparnab and Cote, Luc and Sarkar, Ankita},
  title =	{{Fault-tolerant k-Supplier with Outliers}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{23:1--23:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.23},
  URN =		{urn:nbn:de:0030-drops-197336},
  doi =		{10.4230/LIPIcs.STACS.2024.23},
  annote =	{Keywords: Clustering, approximation algorithms, round-or-cut}
}
Document
Approximate Circular Pattern Matching Under Edit Distance

Authors: Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In the k-Edit Circular Pattern Matching (k-Edit CPM) problem, we are given a length-n text T, a length-m pattern P, and a positive integer threshold k, and we are to report all starting positions of the substrings of T that are at edit distance at most k from some cyclic rotation of P. In the decision version of the problem, we are to check if any such substring exists. Very recently, Charalampopoulos et al. [ESA 2022] presented 𝒪(nk²)-time and 𝒪(nk log³ k)-time solutions for the reporting and decision versions of k-Edit CPM, respectively. Here, we show that the reporting and decision versions of k-Edit CPM can be solved in 𝒪(n+(n/m) k⁶) time and 𝒪(n+(n/m) k⁵ log³ k) time, respectively, thus obtaining the first algorithms with a complexity of the type 𝒪(n+(n/m) poly(k)) for this problem. Notably, our algorithms run in 𝒪(n) time when m = Ω(k⁶) and are superior to the previous respective solutions when m = ω(k⁴). We provide a meta-algorithm that yields efficient algorithms in several other interesting settings, such as when the strings are given in a compressed form (as straight-line programs), when the strings are dynamic, or when we have a quantum computer. We obtain our solutions by exploiting the structure of approximate circular occurrences of P in T, when T is relatively short w.r.t. P. Roughly speaking, either the starting positions of approximate occurrences of rotations of P form 𝒪(k⁴) intervals that can be computed efficiently, or some rotation of P is almost periodic (is at a small edit distance from a string with small period). Dealing with the almost periodic case is the most technically demanding part of this work; we tackle it using properties of locked fragments (originating from [Cole and Hariharan, SICOMP 2002]).

Cite as

Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba. Approximate Circular Pattern Matching Under Edit Distance. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 24:1-24:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{charalampopoulos_et_al:LIPIcs.STACS.2024.24,
  author =	{Charalampopoulos, Panagiotis and Pissis, Solon P. and Radoszewski, Jakub and Rytter, Wojciech and Wale\'{n}, Tomasz and Zuba, Wiktor},
  title =	{{Approximate Circular Pattern Matching Under Edit Distance}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{24:1--24:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.24},
  URN =		{urn:nbn:de:0030-drops-197346},
  doi =		{10.4230/LIPIcs.STACS.2024.24},
  annote =	{Keywords: circular pattern matching, approximate pattern matching, edit distance}
}
Document
Depth-3 Circuit Lower Bounds for k-OV

Authors: Tameem Choudhury and Karteek Sreenivasaiah

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The 2-Orthogonal Vectors (2-OV) problem is the following: given two tuples A and B of n Boolean vectors, each of dimension d, decide if there exist vectors u ∈ A, and v ∈ B, such that u and v are orthogonal. This problem, and its generalization k-OV defined analogously for k tuples, are central problems in the area of fine-grained complexity. One of the major conjectures in fine-grained complexity is that k-OV cannot be solved by a randomised algorithm in n^{k-ε}poly(d) time for any constant ε > 0. In this paper, we are interested in unconditional lower bounds against k-OV, but for weaker models of computation than the general Turing Machine. In particular, we are interested in circuit lower bounds to computing k-OV by Boolean circuit families of depth 3 of the form OR-AND-OR, or equivalently, a disjunction of CNFs. We show that for all k ≤ d, any disjunction of t-CNFs computing k-OV requires size Ω((n/t)^k). In particular, when k is a constant, any disjunction of k-CNFs computing k-OV needs to use Ω(n^k) CNFs. This matches the brute-force construction, and for each fixed k > 2, this is the first unconditional Ω(n^k) lower bound against k-OV for a computation model that can compute it in size O(n^k). Our results partially resolve a conjecture by Kane and Williams [Daniel M. Kane and Richard Ryan Williams, 2019] (page 12, conjecture 10) about depth-3 AC⁰ circuits computing 2-OV. As a secondary result, we show an exponential lower bound on the size of AND∘OR∘AND circuits computing 2-OV when d is very large. Since 2-OV reduces to k-OV by projections trivially, this lower bound works against k-OV as well.

Cite as

Tameem Choudhury and Karteek Sreenivasaiah. Depth-3 Circuit Lower Bounds for k-OV. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{choudhury_et_al:LIPIcs.STACS.2024.25,
  author =	{Choudhury, Tameem and Sreenivasaiah, Karteek},
  title =	{{Depth-3 Circuit Lower Bounds for k-OV}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.25},
  URN =		{urn:nbn:de:0030-drops-197359},
  doi =		{10.4230/LIPIcs.STACS.2024.25},
  annote =	{Keywords: fine grained complexity, k-OV, circuit lower bounds, depth-3 circuits}
}
Document
A Myhill-Nerode Theorem for Generalized Automata, with Applications to Pattern Matching and Compression

Authors: Nicola Cotumaccio

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The model of generalized automata, introduced by Eilenberg in 1974, allows representing a regular language more concisely than conventional automata by allowing edges to be labeled not only with characters, but also strings. Giammaresi and Montalbano introduced a notion of determinism for generalized automata [STACS 1995]. While generalized deterministic automata retain many properties of conventional deterministic automata, the uniqueness of a minimal generalized deterministic automaton is lost. In the first part of the paper, we show that the lack of uniqueness can be explained by introducing a set 𝒲(𝒜) associated with a generalized automaton 𝒜. The set 𝒲(𝒜) is always trivially equal to the set of all prefixes of the language recognized by the automaton, if 𝒜 is a conventional automaton, but this need not be true for generalized automata. By fixing 𝒲(𝒜), we are able to derive for the first time a full Myhill-Nerode theorem for generalized automata, which contains the textbook Myhill-Nerode theorem for conventional automata as a degenerate case. In the second part of the paper, we show that the set 𝒲(𝒜) leads to applications for pattern matching and data compression. Wheeler automata [TCS 2017, SODA 2020] are a popular class of automata that can be compactly stored using e log σ (1 + o(1)) + O(e) bits (e being the number of edges, σ being the size of the alphabet) in such a way that pattern matching queries can be solved in Õ(m) time (m being the length of the pattern). In the paper, we show how to extend these results to generalized automata. More precisely, a Wheeler generalized automata can be stored using 𝔢 log σ (1 + o(1)) + O(e + rn) bits so that pattern matching queries can be solved in Õ(rm) time, where 𝔢 is the total length of all edge labels, r is the maximum length of an edge label and n is the number of states.

Cite as

Nicola Cotumaccio. A Myhill-Nerode Theorem for Generalized Automata, with Applications to Pattern Matching and Compression. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 26:1-26:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cotumaccio:LIPIcs.STACS.2024.26,
  author =	{Cotumaccio, Nicola},
  title =	{{A Myhill-Nerode Theorem for Generalized Automata, with Applications to Pattern Matching and Compression}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{26:1--26:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.26},
  URN =		{urn:nbn:de:0030-drops-197369},
  doi =		{10.4230/LIPIcs.STACS.2024.26},
  annote =	{Keywords: Generalized Automata, Myhill-Nerode Theorem, Regular Languages, Wheeler Graphs, FM-index, Burrows-Wheeler Transform}
}
Document
Nonnegativity Problems for Matrix Semigroups

Authors: Julian D'Costa, Joël Ouaknine, and James Worrell

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The matrix semigroup membership problem asks, given square matrices M,M₁,…,M_k of the same dimension, whether M lies in the semigroup generated by M₁,…,M_k. It is classical that this problem is undecidable in general, but decidable in case M₁,…,M_k commute. In this paper we consider the problem of whether, given M₁,…,M_k, the semigroup generated by M₁,…,M_k contains a non-negative matrix. We show that in case M₁,…,M_k commute, this problem is decidable subject to Schanuel’s Conjecture. We show also that the problem is undecidable if the commutativity assumption is dropped. A key lemma in our decidability proof is a procedure to determine, given a matrix M, whether the sequence of matrices (Mⁿ)_{n = 0}^∞ is ultimately nonnegative. This answers a problem posed by S. Akshay [S. Akshay et al., 2022]. The latter result is in stark contrast to the notorious fact that it is not known how to determine, for any specific matrix index (i,j), whether the sequence (Mⁿ)_{i,j} is ultimately nonnegative. Indeed the latter is equivalent to the Ultimate Positivity Problem for linear recurrence sequences, a longstanding open problem.

Cite as

Julian D'Costa, Joël Ouaknine, and James Worrell. Nonnegativity Problems for Matrix Semigroups. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 27:1-27:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dcosta_et_al:LIPIcs.STACS.2024.27,
  author =	{D'Costa, Julian and Ouaknine, Jo\"{e}l and Worrell, James},
  title =	{{Nonnegativity Problems for Matrix Semigroups}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{27:1--27:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.27},
  URN =		{urn:nbn:de:0030-drops-197371},
  doi =		{10.4230/LIPIcs.STACS.2024.27},
  annote =	{Keywords: Decidability, Linear Recurrence Sequences, Schanuel’s Conjecture}
}
Document
The AC⁰-Complexity of Visibly Pushdown Languages

Authors: Stefan Göller and Nathan Grosshans

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We study the question of which visibly pushdown languages (VPLs) are in the complexity class AC⁰ and how to effectively decide this question. Our contribution is to introduce a particular subclass of one-turn VPLs, called intermediate VPLs, for which the raised question is entirely unclear: to the best of our knowledge our research community is unaware of containment or non-containment in AC⁰ for any language in our newly introduced class. Our main result states that there is an algorithm that, given a visibly pushdown automaton, correctly outputs exactly one of the following: that its language L is in AC⁰, some m ≥ 2 such that MODₘ (the words over {0,1} having a number of 1’s divisible by m) is constant-depth reducible to L (implying that L is not in AC⁰), or a finite disjoint union of intermediate VPLs that L is constant-depth equivalent to. In the latter of the three cases one can moreover effectively compute k,l ∈ ℕ_{> 0} with k≠l such that the concrete intermediate VPL L(S → ε ∣ ac^{k-1}Sb₁ ∣ ac^{l-1}Sb₂) is constant-depth reducible to the language L. Due to their particular nature we conjecture that either all intermediate VPLs are in AC⁰ or all are not. As a corollary of our main result we obtain that in case the input language is a visibly counter language our algorithm can effectively determine if it is in AC⁰ - hence our main result generalizes a result by Krebs et al. stating that it is decidable if a given visibly counter language is in AC⁰ (when restricted to well-matched words). For our proofs we revisit so-called Ext-algebras (introduced by Czarnetzki et al.), which are closely related to forest algebras (introduced by Bojańczyk and Walukiewicz), and use Green’s relations.

Cite as

Stefan Göller and Nathan Grosshans. The AC⁰-Complexity of Visibly Pushdown Languages. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 38:1-38:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{goller_et_al:LIPIcs.STACS.2024.38,
  author =	{G\"{o}ller, Stefan and Grosshans, Nathan},
  title =	{{The AC⁰-Complexity of Visibly Pushdown Languages}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{38:1--38:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.38},
  URN =		{urn:nbn:de:0030-drops-197483},
  doi =		{10.4230/LIPIcs.STACS.2024.38},
  annote =	{Keywords: Visibly pushdown languages, Circuit Complexity, AC0}
}
Document
Decremental Sensitivity Oracles for Covering and Packing Minors

Authors: Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Peter Strulo

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In this paper, we present the first decremental fixed-parameter sensitivity oracles for a number of basic covering and packing problems on graphs. In particular, we obtain the first decremental sensitivity oracles for Vertex Planarization (delete k vertices to make the graph planar) and Cycle Packing (pack k vertex-disjoint cycles in the given graph). That is, we give a sensitivity oracle that preprocesses the given graph in time f(k,𝓁)n^{{O}(1)} such that, when given a set of 𝓁 edge deletions, the data structure decides in time f(k,𝓁) whether the updated graph is a positive instance of the problem. These results are obtained as a corollary of our central result, which is the first decremental sensitivity oracle for Topological Minor Deletion (cover all topological minors in the input graph that belong to a specified set, using k vertices). Though our methodology closely follows the literature, we are able to produce the first explicit bounds on the preprocessing and query times for several problems. We also initiate the study of fixed-parameter sensitivity oracles with so-called structural parameterizations and give sufficient conditions for the existence of fixed-parameter sensitivity oracles where the parameter is just the treewidth of the graph. In contrast, all existing literature on this topic and the aforementioned results in this paper assume a bound on the solution size (a weaker parameter than treewidth for many problems). As corollaries, we obtain decremental sensitivity oracles for well-studied problems such as Vertex Cover and Dominating Set when only the treewidth of the input graph is bounded. A feature of our methodology behind these results is that we are able to obtain query times independent of treewidth.

Cite as

Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Peter Strulo. Decremental Sensitivity Oracles for Covering and Packing Minors. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 44:1-44:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kanesh_et_al:LIPIcs.STACS.2024.44,
  author =	{Kanesh, Lawqueen and Panolan, Fahad and Ramanujan, M. S. and Strulo, Peter},
  title =	{{Decremental Sensitivity Oracles for Covering and Packing Minors}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{44:1--44:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.44},
  URN =		{urn:nbn:de:0030-drops-197544},
  doi =		{10.4230/LIPIcs.STACS.2024.44},
  annote =	{Keywords: Sensitivity oracles, Data Structures, FPT algorithms}
}
Document
Randomized Query Composition and Product Distributions

Authors: Swagato Sanyal

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Let 𝖱_ε denote randomized query complexity for error probability ε, and R: = 𝖱_{1/3}. In this work we investigate whether a perfect composition theorem 𝖱(f∘gⁿ) = Ω(𝖱(f)⋅ 𝖱(g)) holds for a relation f ⊆ {0,1}ⁿ × 𝒮 and a total inner function g:{0,1}^m → {0,1}. Composition theorems of the form 𝖱(f∘gⁿ) = Ω(𝖱(f)⋅ 𝖬(g)) are known for various measures 𝖬. Such measures include the sabotage complexity RS defined by Ben-David and Kothari (ICALP 2015), the max-conflict complexity defined by Gavinsky, Lee, Santha and Sanyal (ICALP 2019), and the linearized complexity measure defined by Ben-David, Blais, Göös and Maystre (FOCS 2022). The above measures are asymptotically non-decreasing in the above order. However, for total Boolean functions no asymptotic separation is known between any two of them. Let 𝖣^{prod} denote the maximum distributional query complexity with respect to any product (over variables) distribution . In this work we show that for any total Boolean function g, the sabotage complexity RS(g) = Ω̃(𝖣^{prod}(g)). This gives the composition theorem 𝖱(f∘gⁿ) = Ω̃(𝖱(f)⋅ 𝖣^{prod}(g)). In light of the minimax theorem which states that 𝖱(g) is the maximum distributional complexity of g over any distribution, our result makes progress towards answering the composition question. We prove our result by means of a complexity measure 𝖱_ε^{prod} that we define for total Boolean functions. Informally, 𝖱_ε^{prod}(g) is the minimum complexity of any randomized decision tree with unlabelled leaves with the property that, for every product distribution μ over the inputs, the average bias of its leaves is at least ((1-ε)-ε)/2 = 1/2-ε. It follows by standard arguments that 𝖱_{1/3}^{prod}(g) = Ω(𝖣^{prod}(g)). We show that 𝖱_{1/3}^{prod} is equivalent to the sabotage complexity up to a logarithmic factor. Ben-David and Kothari asked whether RS(g) = Θ(𝖱(g)) for total functions g. We generalize their question and ask if for any error ε, 𝖱_ε^{prod}(g) = Θ̃(𝖱_ε(g)). We observe that the work by Ben-David, Blais, Göös and Maystre (FOCS 2022) implies that for a perfect composition theorem 𝖱_{1/3}(f∘gⁿ) = Ω(𝖱_{1/3}(f)⋅𝖱_{1/3}(g)) to hold for any relation f and total function g, a necessary condition is that 𝖱_{1/3}(g) = O(1/(ε)⋅ 𝖱_{1/2-ε}(g)) holds for any total function g. We show that 𝖱_ε^{prod}(g) admits a similar error-reduction 𝖱_{1/3}^{prod}(g) = Õ(1/(ε)⋅𝖱_{1/2-ε}^{prod}(g)). Note that from the definition of 𝖱_ε^{prod} it is not immediately clear that 𝖱_ε^{prod} admits any error-reduction at all. We ask if our bound RS(g) = Ω̃(𝖣^{prod}(g)) is tight. We answer this question in the negative, by showing that for the NAND tree function, sabotage complexity is polynomially larger than 𝖣^{prod}. Our proof yields an alternative and different derivation of the tight lower bound on the bounded error randomized query complexity of the NAND tree function (originally proved by Santha in 1985), which may be of independent interest. Our result shows that sometimes, 𝖱_{1/3}^{prod} and sabotage complexity may be useful in producing an asymptotically larger lower bound on 𝖱(f∘gⁿ) than Ω̃(𝖱(f)⋅ 𝖣^{prod}(g)). In addition, this gives an explicit polynomial separation between 𝖱 and 𝖣^{prod} which, to our knowledge, was not known prior to our work.

Cite as

Swagato Sanyal. Randomized Query Composition and Product Distributions. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 56:1-56:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sanyal:LIPIcs.STACS.2024.56,
  author =	{Sanyal, Swagato},
  title =	{{Randomized Query Composition and Product Distributions}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{56:1--56:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.56},
  URN =		{urn:nbn:de:0030-drops-197668},
  doi =		{10.4230/LIPIcs.STACS.2024.56},
  annote =	{Keywords: Randomized query complexity, Decision Tree, Boolean function complexity, Analysis of Boolean functions}
}
Document
Conservativity of Type Theory over Higher-Order Arithmetic

Authors: Daniël Otten and Benno van den Berg

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
We investigate how much type theory can prove about the natural numbers. A classical result in this area shows that dependent type theory without any universes is conservative over Heyting Arithmetic (HA). We build on this result by showing that type theories with one level of impredicative universes are conservative over Higher-order Heyting Arithmetic (HAH). This result clearly depends on the specific type theory in question, however, we show that the interpretation of logic also plays a major role. For proof-irrelevant interpretations, we will see that strong versions of type theory prove exactly the same higher-order arithmetical formulas as HAH. Conversely, for proof-relevant interpretations, they prove different second-order arithmetical formulas than HAH, while still proving exactly the same first-order arithmetical formulas. Along the way, we investigate the various interpretations of logic in type theory, and to what extent dependent type theories can be seen as extensions of higher-order logic. We apply our results by proving a De Jongh’s theorem for type theory.

Cite as

Daniël Otten and Benno van den Berg. Conservativity of Type Theory over Higher-Order Arithmetic. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 44:1-44:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{otten_et_al:LIPIcs.CSL.2024.44,
  author =	{Otten, Dani\"{e}l and van den Berg, Benno},
  title =	{{Conservativity of Type Theory over Higher-Order Arithmetic}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{44:1--44:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.44},
  URN =		{urn:nbn:de:0030-drops-196873},
  doi =		{10.4230/LIPIcs.CSL.2024.44},
  annote =	{Keywords: Conservativity, Arithmetic, Realizability, Calculus of Inductive Constructions}
}
Document
Minimum Separator Reconfiguration

Authors: Guilherme C. M. Gomes, Clément Legrand-Duchesne, Reem Mahmoud, Amer E. Mouawad, Yoshio Okamoto, Vinicius F. dos Santos, and Tom C. van der Zanden

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
We study the problem of reconfiguring one minimum s-t-separator A into another minimum s-t-separator B in some n-vertex graph G containing two non-adjacent vertices s and t. We consider several variants of the problem as we focus on both the token sliding and token jumping models. Our first contribution is a polynomial-time algorithm that computes (if one exists) a minimum-length sequence of slides transforming A into B. We additionally establish that the existence of a sequence of jumps (which need not be of minimum length) can be decided in polynomial time (by an algorithm that also outputs a witnessing sequence when one exists). In contrast, and somewhat surprisingly, we show that deciding if a sequence of at most 𝓁 jumps can transform A into B is an NP-complete problem. To complement this negative result, we investigate the parameterized complexity of what we believe to be the two most natural parameterized counterparts of the latter problem; in particular, we study the problem of computing a minimum-length sequence of jumps when parameterized by the size k of the minimum s-t-separators and when parameterized by the number 𝓁 of jumps. For the first parameterization, we show that the problem is fixed-parameter tractable, but does not admit a polynomial kernel unless NP ⊆ coNP/poly. We complete the picture by designing a kernel with 𝒪(𝓁²) vertices and edges for the length 𝓁 of the sequence as a parameter.

Cite as

Guilherme C. M. Gomes, Clément Legrand-Duchesne, Reem Mahmoud, Amer E. Mouawad, Yoshio Okamoto, Vinicius F. dos Santos, and Tom C. van der Zanden. Minimum Separator Reconfiguration. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{c.m.gomes_et_al:LIPIcs.IPEC.2023.9,
  author =	{C. M. Gomes, Guilherme and Legrand-Duchesne, Cl\'{e}ment and Mahmoud, Reem and Mouawad, Amer E. and Okamoto, Yoshio and F. dos Santos, Vinicius and C. van der Zanden, Tom},
  title =	{{Minimum Separator Reconfiguration}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{9:1--9:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.9},
  URN =		{urn:nbn:de:0030-drops-194288},
  doi =		{10.4230/LIPIcs.IPEC.2023.9},
  annote =	{Keywords: minimum separators, combinatorial reconfiguration, parameterized complexity, kernelization}
}
Document
Approximate Monotone Local Search for Weighted Problems

Authors: Barış Can Esmer, Ariel Kulik, Dániel Marx, Daniel Neuen, and Roohani Sharma

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
In a recent work, Esmer et al. describe a simple method - Approximate Monotone Local Search - to obtain exponential approximation algorithms from existing parameterized exact algorithms, polynomial-time approximation algorithms and, more generally, parameterized approximation algorithms. In this work, we generalize those results to the weighted setting. More formally, we consider monotone subset minimization problems over a weighted universe of size n (e.g., Vertex Cover, d-Hitting Set and Feedback Vertex Set). We consider a model where the algorithm is only given access to a subroutine that finds a solution of weight at most α ⋅ W (and of arbitrary cardinality) in time c^k ⋅ n^{𝒪(1)} where W is the minimum weight of a solution of cardinality at most k. In the unweighted setting, Esmer et al. determine the smallest value d for which a β-approximation algorithm running in time dⁿ ⋅ n^{𝒪(1)} can be obtained in this model. We show that the same dependencies also hold in a weighted setting in this model: for every fixed ε > 0 we obtain a β-approximation algorithm running in time 𝒪((d+ε)ⁿ), for the same d as in the unweighted setting. Similarly, we also extend a β-approximate brute-force search (in a model which only provides access to a membership oracle) to the weighted setting. Using existing approximation algorithms and exact parameterized algorithms for weighted problems, we obtain the first exponential-time β-approximation algorithms that are better than brute force for a variety of problems including Weighted Vertex Cover, Weighted d-Hitting Set, Weighted Feedback Vertex Set and Weighted Multicut.

Cite as

Barış Can Esmer, Ariel Kulik, Dániel Marx, Daniel Neuen, and Roohani Sharma. Approximate Monotone Local Search for Weighted Problems. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 17:1-17:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{esmer_et_al:LIPIcs.IPEC.2023.17,
  author =	{Esmer, Bar{\i}\c{s} Can and Kulik, Ariel and Marx, D\'{a}niel and Neuen, Daniel and Sharma, Roohani},
  title =	{{Approximate Monotone Local Search for Weighted Problems}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{17:1--17:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.17},
  URN =		{urn:nbn:de:0030-drops-194360},
  doi =		{10.4230/LIPIcs.IPEC.2023.17},
  annote =	{Keywords: parameterized approximations, exponential approximations, monotone local search}
}
Document
Effective Resistances in Non-Expander Graphs

Authors: Dongrun Cai, Xue Chen, and Pan Peng

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Effective resistances are ubiquitous in graph algorithms and network analysis. For an undirected graph G, its effective resistance R_G(s,t) between two vertices s and t is defined as the equivalent resistance between s and t if G is thought of as an electrical network with unit resistance on each edge. If we use L_G to denote the Laplacian matrix of G and L_G^† to denote its pseudo-inverse, we have R_G(s,t) = (𝟏_s-𝟏_t)^⊤ L^† (𝟏_s-𝟏_t) such that classical Laplacian solvers [Daniel A. Spielman and Shang{-}Hua Teng, 2014] provide almost-linear time algorithms to approximate R_G(s,t). In this work, we study sublinear time algorithms to approximate the effective resistance of an adjacent pair s and t. We consider the classical adjacency list model [Ron, 2019] for local algorithms. While recent works [Andoni et al., 2018; Peng et al., 2021; Li and Sachdeva, 2023] have provided sublinear time algorithms for expander graphs, we prove several lower bounds for general graphs of n vertices and m edges: 1) It needs Ω(n) queries to obtain 1.01-approximations of the effective resistance of an adjacent pair s and t, even for graphs of degree at most 3 except s and t. 2) For graphs of degree at most d and any parameter 𝓁, it needs Ω(m/𝓁) queries to obtain c ⋅ min{d,𝓁}-approximations where c > 0 is a universal constant. Moreover, we supplement the first lower bound by providing a sublinear time (1+ε)-approximation algorithm for graphs of degree 2 except the pair s and t. One of our technical ingredients is to bound the expansion of a graph in terms of the smallest non-trivial eigenvalue of its Laplacian matrix after removing edges. We discover a new lower bound on the eigenvalues of perturbed graphs (resp. perturbed matrices) by incorporating the effective resistance of the removed edge (resp. the leverage scores of the removed rows), which may be of independent interest.

Cite as

Dongrun Cai, Xue Chen, and Pan Peng. Effective Resistances in Non-Expander Graphs. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 29:1-29:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cai_et_al:LIPIcs.ESA.2023.29,
  author =	{Cai, Dongrun and Chen, Xue and Peng, Pan},
  title =	{{Effective Resistances in Non-Expander Graphs}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{29:1--29:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.29},
  URN =		{urn:nbn:de:0030-drops-186823},
  doi =		{10.4230/LIPIcs.ESA.2023.29},
  annote =	{Keywords: Sublinear Time Algorithm, Effective Resistance, Leverage Scores, Matrix Perturbation}
}
  • Refine by Author
  • 17 Lokshtanov, Daniel
  • 14 Saurabh, Saket
  • 7 Marx, Dániel
  • 7 Ramanujan, M. S.
  • 7 Zehavi, Meirav
  • Show More...

  • Refine by Classification
  • 12 Theory of computation → Parameterized complexity and exact algorithms
  • 10 Theory of computation → Design and analysis of algorithms
  • 6 Mathematics of computing → Combinatorial algorithms
  • 6 Theory of computation → Fixed parameter tractability
  • 5 Theory of computation → Data structures design and analysis
  • Show More...

  • Refine by Keyword
  • 9 compact representation of games
  • 8 congestion games
  • 7 local-effect games
  • 7 parameterized complexity
  • 6 action-graph gamescomputational markets; auctions; bidding strategiesNegotiatio
  • Show More...

  • Refine by Type
  • 152 document

  • Refine by Publication Year
  • 26 2020
  • 20 2005
  • 20 2018
  • 17 2021
  • 12 2024
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail