8 Search Results for "Schulz, Michael"


Document
Recent Trends in Graph Decomposition (Dagstuhl Seminar 23331)

Authors: George Karypis, Christian Schulz, Darren Strash, Deepak Ajwani, Rob H. Bisseling, Katrin Casel, Ümit V. Çatalyürek, Cédric Chevalier, Florian Chudigiewitsch, Marcelo Fonseca Faraj, Michael Fellows, Lars Gottesbüren, Tobias Heuer, Kamer Kaya, Jakub Lacki, Johannes Langguth, Xiaoye Sherry Li, Ruben Mayer, Johannes Meintrup, Yosuke Mizutani, François Pellegrini, Fabrizio Petrini, Frances Rosamond, Ilya Safro, Sebastian Schlag, Roohani Sharma, Blair D. Sullivan, Bora Uçar, and Albert-Jan Yzelman

Published in: Dagstuhl Reports, Volume 13, Issue 8 (2024)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23331 "Recent Trends in Graph Decomposition", which took place from 13. August to 18. August, 2023. The seminar brought together 33 experts from academia and industry to discuss graph decomposition, a pivotal technique for handling massive graphs in applications such as social networks and scientific simulations. The seminar addressed the challenges posed by contemporary hardware designs, the potential of deep neural networks and reinforcement learning in developing heuristics, the unique optimization requirements of large sparse data, and the need for scalable algorithms suitable for emerging architectures. Through presentations, discussions, and collaborative sessions, the event fostered an exchange of innovative ideas, leading to the creation of community notes highlighting key open problems in the field.

Cite as

George Karypis, Christian Schulz, Darren Strash, Deepak Ajwani, Rob H. Bisseling, Katrin Casel, Ümit V. Çatalyürek, Cédric Chevalier, Florian Chudigiewitsch, Marcelo Fonseca Faraj, Michael Fellows, Lars Gottesbüren, Tobias Heuer, Kamer Kaya, Jakub Lacki, Johannes Langguth, Xiaoye Sherry Li, Ruben Mayer, Johannes Meintrup, Yosuke Mizutani, François Pellegrini, Fabrizio Petrini, Frances Rosamond, Ilya Safro, Sebastian Schlag, Roohani Sharma, Blair D. Sullivan, Bora Uçar, and Albert-Jan Yzelman. Recent Trends in Graph Decomposition (Dagstuhl Seminar 23331). In Dagstuhl Reports, Volume 13, Issue 8, pp. 1-45, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{karypis_et_al:DagRep.13.8.1,
  author =	{Karypis, George and Schulz, Christian and Strash, Darren and Ajwani, Deepak and Bisseling, Rob H. and Casel, Katrin and \c{C}ataly\"{u}rek, \"{U}mit V. and Chevalier, C\'{e}dric and Chudigiewitsch, Florian and Faraj, Marcelo Fonseca and Fellows, Michael and Gottesb\"{u}ren, Lars and Heuer, Tobias and Kaya, Kamer and Lacki, Jakub and Langguth, Johannes and Li, Xiaoye Sherry and Mayer, Ruben and Meintrup, Johannes and Mizutani, Yosuke and Pellegrini, Fran\c{c}ois and Petrini, Fabrizio and Rosamond, Frances and Safro, Ilya and Schlag, Sebastian and Sharma, Roohani and Sullivan, Blair D. and U\c{c}ar, Bora and Yzelman, Albert-Jan},
  title =	{{Recent Trends in Graph Decomposition (Dagstuhl Seminar 23331)}},
  pages =	{1--45},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{8},
  editor =	{Karypis, George and Schulz, Christian and Strash, Darren},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.8.1},
  URN =		{urn:nbn:de:0030-drops-198114},
  doi =		{10.4230/DagRep.13.8.1},
  annote =	{Keywords: combinatorial optimization, experimental algorithmics, parallel algorithms}
}
Document
Seventeen Provers Under the Hammer

Authors: Martin Desharnais, Petar Vukmirović, Jasmin Blanchette, and Makarius Wenzel

Published in: LIPIcs, Volume 237, 13th International Conference on Interactive Theorem Proving (ITP 2022)


Abstract
One of the main success stories of automatic theorem provers has been their integration into proof assistants. Such integrations, or "hammers," increase proof automation and hence user productivity. In this paper, we use Isabelle/HOL’s Sledgehammer tool to find out how useful modern provers are at proving formulas in higher-order logic. Our evaluation follows in the steps of Böhme and Nipkow’s Judgment Day study from 2010, but instead of three provers we use 17, including SMT solvers and higher-order provers. Our work offers an alternative yardstick for comparing modern provers, next to the benchmarks and competitions emerging from the TPTP World and SMT-LIB.

Cite as

Martin Desharnais, Petar Vukmirović, Jasmin Blanchette, and Makarius Wenzel. Seventeen Provers Under the Hammer. In 13th International Conference on Interactive Theorem Proving (ITP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 237, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{desharnais_et_al:LIPIcs.ITP.2022.8,
  author =	{Desharnais, Martin and Vukmirovi\'{c}, Petar and Blanchette, Jasmin and Wenzel, Makarius},
  title =	{{Seventeen Provers Under the Hammer}},
  booktitle =	{13th International Conference on Interactive Theorem Proving (ITP 2022)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-252-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{237},
  editor =	{Andronick, June and de Moura, Leonardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.8},
  URN =		{urn:nbn:de:0030-drops-167178},
  doi =		{10.4230/LIPIcs.ITP.2022.8},
  annote =	{Keywords: Automatic theorem proving, interactive theorem proving, proof assistants}
}
Document
Efficient Exact Learning Algorithms for Road Networks and Other Graphs with Bounded Clustering Degrees

Authors: Ramtin Afshar, Michael T. Goodrich, and Evrim Ozel

Published in: LIPIcs, Volume 233, 20th International Symposium on Experimental Algorithms (SEA 2022)


Abstract
The completeness of road network data is significant in the quality of various routing services and applications. We introduce an efficient randomized algorithm for exact learning of road networks using simple distance queries, which can find missing roads and improve the quality of routing services. The efficiency of our algorithm depends on a cluster degree parameter, d_max, which is an upper bound on the degrees of vertex clusters defined during our algorithm. Unfortunately, we leave open the problem of theoretically bounding d_max, although we conjecture that d_max is small for road networks and other similar types of graphs. We support this conjecture by experimentally evaluating our algorithm on road network data for the U.S. and 5 European countries of various sizes. This analysis provides experimental evidence that our algorithm issues a quasilinear number of queries in expectation for road networks and similar graphs.

Cite as

Ramtin Afshar, Michael T. Goodrich, and Evrim Ozel. Efficient Exact Learning Algorithms for Road Networks and Other Graphs with Bounded Clustering Degrees. In 20th International Symposium on Experimental Algorithms (SEA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 233, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{afshar_et_al:LIPIcs.SEA.2022.9,
  author =	{Afshar, Ramtin and Goodrich, Michael T. and Ozel, Evrim},
  title =	{{Efficient Exact Learning Algorithms for Road Networks and Other Graphs with Bounded Clustering Degrees}},
  booktitle =	{20th International Symposium on Experimental Algorithms (SEA 2022)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-251-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{233},
  editor =	{Schulz, Christian and U\c{c}ar, Bora},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2022.9},
  URN =		{urn:nbn:de:0030-drops-165432},
  doi =		{10.4230/LIPIcs.SEA.2022.9},
  annote =	{Keywords: Road Networks, Exact Learning, Graph Reconstruction, Randomized Algorithms}
}
Document
A Branch-And-Bound Algorithm for Cluster Editing

Authors: Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias Heuer, Jonas Spinner, Christopher Weyand, and Marcus Wilhelm

Published in: LIPIcs, Volume 233, 20th International Symposium on Experimental Algorithms (SEA 2022)


Abstract
The cluster editing problem asks to transform a given graph into a disjoint union of cliques by inserting and deleting as few edges as possible. We describe and evaluate an exact branch-and-bound algorithm for cluster editing. For this, we introduce new reduction rules and adapt existing ones. Moreover, we generalize a known packing technique to obtain lower bounds and experimentally show that it contributes significantly to the performance of the solver. Our experiments further evaluate the effectiveness of the different reduction rules and examine the effects of structural properties of the input graph on solver performance. Our solver won the exact track of the 2021 PACE challenge.

Cite as

Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias Heuer, Jonas Spinner, Christopher Weyand, and Marcus Wilhelm. A Branch-And-Bound Algorithm for Cluster Editing. In 20th International Symposium on Experimental Algorithms (SEA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 233, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{blasius_et_al:LIPIcs.SEA.2022.13,
  author =	{Bl\"{a}sius, Thomas and Fischbeck, Philipp and Gottesb\"{u}ren, Lars and Hamann, Michael and Heuer, Tobias and Spinner, Jonas and Weyand, Christopher and Wilhelm, Marcus},
  title =	{{A Branch-And-Bound Algorithm for Cluster Editing}},
  booktitle =	{20th International Symposium on Experimental Algorithms (SEA 2022)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-251-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{233},
  editor =	{Schulz, Christian and U\c{c}ar, Bora},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2022.13},
  URN =		{urn:nbn:de:0030-drops-165473},
  doi =		{10.4230/LIPIcs.SEA.2022.13},
  annote =	{Keywords: cluster editing}
}
Document
Diversity in News Recommendation (Dagstuhl Perspectives Workshop 19482)

Authors: Abraham Bernstein, Claes de Vreese, Natali Helberger, Wolfgang Schulz, Katharina Zweig, Christian Baden, Michael A. Beam, Marc P. Hauer, Lucien Heitz, Pascal Jürgens, Christian Katzenbach, Benjamin Kille, Beate Klimkiewicz, Wiebke Loosen, Judith Moeller, Goran Radanovic, Guy Shani, Nava Tintarev, Suzanne Tolmeijer, Wouter van Atteveldt, Sanne Vrijenhoek, and Theresa Zueger

Published in: Dagstuhl Manifestos, Volume 9, Issue 1 (2021)


Abstract
News diversity in the media has for a long time been a foundational and uncontested basis for ensuring that the communicative needs of individuals and society at large are met. Today, people increasingly rely on online content and recommender systems to consume information challenging the traditional concept of news diversity. In addition, the very concept of diversity, which differs between disciplines, will need to be re-evaluated requiring an interdisciplinary investigation, which requires a new level of mutual cooperation between computer scientists, social scientists, and legal scholars. Based on the outcome of a interdisciplinary workshop, we have the following recommendations, directed at researchers, funders, legislators, regulators, and the media industry: - Conduct interdisciplinary research on news recommenders and diversity. - Create a safe harbor for academic research with industry data. - Strengthen the role of public values in news recommenders. - Create a meaningful governance framework for news recommenders. - Fund a joint lab to spearhead the needed interdisciplinary research, boost practical innovation, develop reference solutions, and transfer insights into practice.

Cite as

Abraham Bernstein, Claes de Vreese, Natali Helberger, Wolfgang Schulz, Katharina Zweig, Christian Baden, Michael A. Beam, Marc P. Hauer, Lucien Heitz, Pascal Jürgens, Christian Katzenbach, Benjamin Kille, Beate Klimkiewicz, Wiebke Loosen, Judith Moeller, Goran Radanovic, Guy Shani, Nava Tintarev, Suzanne Tolmeijer, Wouter van Atteveldt, Sanne Vrijenhoek, and Theresa Zueger. Diversity in News Recommendation (Dagstuhl Perspectives Workshop 19482). In Dagstuhl Manifestos, Volume 9, Issue 1, pp. 43-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@Article{bernstein_et_al:DagMan.9.1.43,
  author =	{Bernstein, Abraham and de Vreese, Claes and Helberger, Natali and Schulz, Wolfgang and Zweig, Katharina and Baden, Christian and Beam, Michael A. and Hauer, Marc P. and Heitz, Lucien and J\"{u}rgens, Pascal and Katzenbach, Christian and Kille, Benjamin and Klimkiewicz, Beate and Loosen, Wiebke and Moeller, Judith and Radanovic, Goran and Shani, Guy and Tintarev, Nava and Tolmeijer, Suzanne and van Atteveldt, Wouter and Vrijenhoek, Sanne and Zueger, Theresa},
  title =	{{Diversity in News Recommendation (Dagstuhl Perspectives Workshop 19482)}},
  pages =	{43--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2021},
  volume =	{9},
  number =	{1},
  editor =	{Bernstein, Abraham and de Vreese, Claes and Helberger, Natali and Schulz, Wolfgang and Zweig, Katharina and Baden, Christian and Beam, Michael A. and Hauer, Marc P. and Heitz, Lucien and J\"{u}rgens, Pascal and Katzenbach, Christian and Kille, Benjamin and Klimkiewicz, Beate and Loosen, Wiebke and Moeller, Judith and Radanovic, Goran and Shani, Guy and Tintarev, Nava and Tolmeijer, Suzanne and van Atteveldt, Wouter and Vrijenhoek, Sanne and Zueger, Theresa},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagMan.9.1.43},
  URN =		{urn:nbn:de:0030-drops-137456},
  doi =		{10.4230/DagMan.9.1.43},
  annote =	{Keywords: News, recommender systems, diversity}
}
Document
Recognizing Planar Laman Graphs

Authors: Jonathan Rollin, Lena Schlipf, and André Schulz

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
Laman graphs are the minimally rigid graphs in the plane. We present two algorithms for recognizing planar Laman graphs. A simple algorithm with running time O(n^(3/2)) and a more complicated algorithm with running time O(n log^3 n) based on involved planar network flow algorithms. Both improve upon the previously fastest algorithm for general graphs by Gabow and Westermann [Algorithmica, 7(5-6):465 - 497, 1992] with running time O(n sqrt{n log n}). To solve this problem we introduce two algorithms (with the running times stated above) that check whether for a directed planar graph G, disjoint sets S, T subseteq V(G), and a fixed k the following connectivity condition holds: for each vertex s in S there are k directed paths from s to T pairwise having only vertex s in common. This variant of connectivity seems interesting on its own.

Cite as

Jonathan Rollin, Lena Schlipf, and André Schulz. Recognizing Planar Laman Graphs. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 79:1-79:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{rollin_et_al:LIPIcs.ESA.2019.79,
  author =	{Rollin, Jonathan and Schlipf, Lena and Schulz, Andr\'{e}},
  title =	{{Recognizing Planar Laman Graphs}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{79:1--79:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.79},
  URN =		{urn:nbn:de:0030-drops-112001},
  doi =		{10.4230/LIPIcs.ESA.2019.79},
  annote =	{Keywords: planar graphs, Laman graphs, network flow, connectivity}
}
Document
08191 Working Group Summary – Visually Comparing a Set of Graphs

Authors: Mario Albrecht, Alejandro Estrella-Balderrama, Markus Geyer, Carsten Gutwenger, Karsten Klein, Oliver Kohlbacher, and Michael Schulz

Published in: Dagstuhl Seminar Proceedings, Volume 8191, Graph Drawing with Applications to Bioinformatics and Social Sciences (2008)


Abstract
We consider methods to visually compare graphs, more to focus on the differences of the graphs than on the similarities. Our two-level approach constructs a meaningful overview of the given graphs combined with a detailed view focusing on a local area of change. The actual layout of these graphs has to be evaluated depending on the specific type of biological network to be visualized in each case. We look into different variants and propose properties to be optimized in our visualizations.

Cite as

Mario Albrecht, Alejandro Estrella-Balderrama, Markus Geyer, Carsten Gutwenger, Karsten Klein, Oliver Kohlbacher, and Michael Schulz. 08191 Working Group Summary – Visually Comparing a Set of Graphs. In Graph Drawing with Applications to Bioinformatics and Social Sciences. Dagstuhl Seminar Proceedings, Volume 8191, pp. 1-6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{albrecht_et_al:DagSemProc.08191.6,
  author =	{Albrecht, Mario and Estrella-Balderrama, Alejandro and Geyer, Markus and Gutwenger, Carsten and Klein, Karsten and Kohlbacher, Oliver and Schulz, Michael},
  title =	{{08191 Working Group Summary – Visually Comparing a Set of Graphs}},
  booktitle =	{Graph Drawing with Applications to Bioinformatics and Social Sciences},
  pages =	{1--6},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8191},
  editor =	{Stephen P. Borgatti and Stephen Kobourov and Oliver Kohlbacher and Petra Mutzel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.08191.6},
  URN =		{urn:nbn:de:0030-drops-15536},
  doi =		{10.4230/DagSemProc.08191.6},
  annote =	{Keywords: Graph drawing, visual graph comparison}
}
Document
Named Entity or Entity Name?

Authors: Stefan Schulz

Published in: Dagstuhl Seminar Proceedings, Volume 8131, Ontologies and Text Mining for Life Sciences : Current Status and Future Perspectives (2008)


Abstract
The expression "named entity" is very fuzzy and its definitions partly contradictory. Semantic subtleties involving the words "entity", "name" and "term" are largely ignored. Based on formal ontology a more principled typology is introduced.

Cite as

Stefan Schulz. Named Entity or Entity Name?. In Ontologies and Text Mining for Life Sciences : Current Status and Future Perspectives. Dagstuhl Seminar Proceedings, Volume 8131, p. 1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{schulz:DagSemProc.08131.9,
  author =	{Schulz, Stefan},
  title =	{{Named Entity or Entity Name?}},
  booktitle =	{Ontologies and Text Mining for Life Sciences : Current Status and Future Perspectives},
  pages =	{1--1},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8131},
  editor =	{Michael Ashburner and Ulf Leser and Dietrich Rebholz-Schuhmann},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.08131.9},
  URN =		{urn:nbn:de:0030-drops-15214},
  doi =		{10.4230/DagSemProc.08131.9},
  annote =	{Keywords: Ontology, Named Entity Recognition}
}
  • Refine by Author
  • 2 Gottesbüren, Lars
  • 2 Heuer, Tobias
  • 1 Afshar, Ramtin
  • 1 Ajwani, Deepak
  • 1 Albrecht, Mario
  • Show More...

  • Refine by Classification
  • 2 Mathematics of computing → Graph algorithms
  • 1 Applied computing → Economics
  • 1 Applied computing → Psychology
  • 1 Applied computing → Sociology
  • 1 Computing methodologies → Theorem proving algorithms
  • Show More...

  • Refine by Keyword
  • 1 Automatic theorem proving
  • 1 Exact Learning
  • 1 Graph Reconstruction
  • 1 Graph drawing
  • 1 Laman graphs
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 3 2022
  • 2 2008
  • 1 2019
  • 1 2021
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail