2 Search Results for "Affeldt, Reynald"


Document
Extending Equational Monadic Reasoning with Monad Transformers

Authors: Reynald Affeldt and David Nowak

Published in: LIPIcs, Volume 188, 26th International Conference on Types for Proofs and Programs (TYPES 2020)


Abstract
There is a recent interest for the verification of monadic programs using proof assistants. This line of research raises the question of the integration of monad transformers, a standard technique to combine monads. In this paper, we extend Monae, a Coq library for monadic equational reasoning, with monad transformers and we explain the benefits of this extension. Our starting point is the existing theory of modular monad transformers, which provides a uniform treatment of operations. Using this theory, we simplify the formalization of models in Monae and we propose an approach to support monadic equational reasoning in the presence of monad transformers. We also use Monae to revisit the lifting theorems of modular monad transformers by providing equational proofs and explaining how to patch a known bug using a non-standard use of Coq that combines impredicative polymorphism and parametricity.

Cite as

Reynald Affeldt and David Nowak. Extending Equational Monadic Reasoning with Monad Transformers. In 26th International Conference on Types for Proofs and Programs (TYPES 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 188, pp. 2:1-2:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{affeldt_et_al:LIPIcs.TYPES.2020.2,
  author =	{Affeldt, Reynald and Nowak, David},
  title =	{{Extending Equational Monadic Reasoning with Monad Transformers}},
  booktitle =	{26th International Conference on Types for Proofs and Programs (TYPES 2020)},
  pages =	{2:1--2:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-182-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{188},
  editor =	{de'Liguoro, Ugo and Berardi, Stefano and Altenkirch, Thorsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2020.2},
  URN =		{urn:nbn:de:0030-drops-138810},
  doi =		{10.4230/LIPIcs.TYPES.2020.2},
  annote =	{Keywords: monads, monad transformers, Coq, impredicativity, parametricity}
}
Document
Proving Tree Algorithms for Succinct Data Structures

Authors: Reynald Affeldt, Jacques Garrigue, Xuanrui Qi, and Kazunari Tanaka

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
Succinct data structures give space-efficient representations of large amounts of data without sacrificing performance. They rely on cleverly designed data representations and algorithms. We present here the formalization in Coq/SSReflect of two different tree-based succinct representations and their accompanying algorithms. One is the Level-Order Unary Degree Sequence, which encodes the structure of a tree in breadth-first order as a sequence of bits, where access operations can be defined in terms of Rank and Select, which work in constant time for static bit sequences. The other represents dynamic bit sequences as binary balanced trees, where Rank and Select present a low logarithmic overhead compared to their static versions, and with efficient insertion and deletion. The two can be stacked to provide a dynamic representation of dictionaries for instance. While both representations are well-known, we believe this to be their first formalization and a needed step towards provably-safe implementations of big data.

Cite as

Reynald Affeldt, Jacques Garrigue, Xuanrui Qi, and Kazunari Tanaka. Proving Tree Algorithms for Succinct Data Structures. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{affeldt_et_al:LIPIcs.ITP.2019.5,
  author =	{Affeldt, Reynald and Garrigue, Jacques and Qi, Xuanrui and Tanaka, Kazunari},
  title =	{{Proving Tree Algorithms for Succinct Data Structures}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.5},
  URN =		{urn:nbn:de:0030-drops-110609},
  doi =		{10.4230/LIPIcs.ITP.2019.5},
  annote =	{Keywords: Coq, small-scale reflection, succinct data structures, LOUDS, bit vectors, self balancing trees}
}
  • Refine by Author
  • 2 Affeldt, Reynald
  • 1 Garrigue, Jacques
  • 1 Nowak, David
  • 1 Qi, Xuanrui
  • 1 Tanaka, Kazunari

  • Refine by Classification
  • 2 Software and its engineering → Formal software verification
  • 2 Theory of computation → Logic and verification
  • 1 Theory of computation → Data structures design and analysis

  • Refine by Keyword
  • 2 Coq
  • 1 LOUDS
  • 1 bit vectors
  • 1 impredicativity
  • 1 monad transformers
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2019
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail