3 Search Results for "Aguilera, Marcos K."


Document
Frugal Byzantine Computing

Authors: Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Dalia Papuc, Athanasios Xygkis, and Igor Zablotchi

Published in: LIPIcs, Volume 209, 35th International Symposium on Distributed Computing (DISC 2021)


Abstract
Traditional techniques for handling Byzantine failures are expensive: digital signatures are too costly, while using 3f+1 replicas is uneconomical (f denotes the maximum number of Byzantine processes). We seek algorithms that reduce the number of replicas to 2f+1 and minimize the number of signatures. While the first goal can be achieved in the message-and-memory model, accomplishing the second goal simultaneously is challenging. We first address this challenge for the problem of broadcasting messages reliably. We study two variants of this problem, Consistent Broadcast and Reliable Broadcast, typically considered very close. Perhaps surprisingly, we establish a separation between them in terms of signatures required. In particular, we show that Consistent Broadcast requires at least 1 signature in some execution, while Reliable Broadcast requires O(n) signatures in some execution. We present matching upper bounds for both primitives within constant factors. We then turn to the problem of consensus and argue that this separation matters for solving consensus with Byzantine failures: we present a practical consensus algorithm that uses Consistent Broadcast as its main communication primitive. This algorithm works for n = 2f+1 and avoids signatures in the common case - properties that have not been simultaneously achieved previously. Overall, our work approaches Byzantine computing in a frugal manner and motivates the use of Consistent Broadcast - rather than Reliable Broadcast - as a key primitive for reaching agreement.

Cite as

Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Dalia Papuc, Athanasios Xygkis, and Igor Zablotchi. Frugal Byzantine Computing. In 35th International Symposium on Distributed Computing (DISC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 209, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{aguilera_et_al:LIPIcs.DISC.2021.3,
  author =	{Aguilera, Marcos K. and Ben-David, Naama and Guerraoui, Rachid and Papuc, Dalia and Xygkis, Athanasios and Zablotchi, Igor},
  title =	{{Frugal Byzantine Computing}},
  booktitle =	{35th International Symposium on Distributed Computing (DISC 2021)},
  pages =	{3:1--3:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-210-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{209},
  editor =	{Gilbert, Seth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2021.3},
  URN =		{urn:nbn:de:0030-drops-148051},
  doi =		{10.4230/LIPIcs.DISC.2021.3},
  annote =	{Keywords: Reliable Broadcast, Consistent Broadcast, Consensus, Byzantine Failure, Message-and-memory}
}
Document
Optimal Register Construction in M&M Systems

Authors: Vassos Hadzilacos, Xing Hu, and Sam Toueg

Published in: LIPIcs, Volume 153, 23rd International Conference on Principles of Distributed Systems (OPODIS 2019)


Abstract
Motivated by recent distributed systems technology, Aguilera et al. introduced a hybrid model of distributed computing, called message-and-memory model or m&m model for short [Marcos K. Aguilera et al., 2018]. In this model, processes can communicate by message passing and also by accessing some shared memory. We consider the basic problem of implementing an atomic single-writer multi-reader (SWMR) register shared by all the processes in m&m systems. Specifically, we give an algorithm that implements such a register in m&m systems and show that it is optimal in the number of process crashes that it can tolerate. This generalizes the well-known implementation of an atomic SWMR register in a pure message-passing system [Attiya et al., 1995].

Cite as

Vassos Hadzilacos, Xing Hu, and Sam Toueg. Optimal Register Construction in M&M Systems. In 23rd International Conference on Principles of Distributed Systems (OPODIS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 153, pp. 28:1-28:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{hadzilacos_et_al:LIPIcs.OPODIS.2019.28,
  author =	{Hadzilacos, Vassos and Hu, Xing and Toueg, Sam},
  title =	{{Optimal Register Construction in M\&M Systems}},
  booktitle =	{23rd International Conference on Principles of Distributed Systems (OPODIS 2019)},
  pages =	{28:1--28:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-133-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{153},
  editor =	{Felber, Pascal and Friedman, Roy and Gilbert, Seth and Miller, Avery},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2019.28},
  URN =		{urn:nbn:de:0030-drops-118148},
  doi =		{10.4230/LIPIcs.OPODIS.2019.28},
  annote =	{Keywords: asynchronous distributed system, shared memory, message passing}
}
Document
Brief Announcement
Brief Announcement: Black-Box Concurrent Data Structures for NUMA Architectures

Authors: Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K. Aguilera

Published in: LIPIcs, Volume 91, 31st International Symposium on Distributed Computing (DISC 2017)


Abstract
Recent work introduced a method to automatically produce concurrent data structures for NUMA architectures. We present a summary of that work.

Cite as

Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K. Aguilera. Brief Announcement: Black-Box Concurrent Data Structures for NUMA Architectures. In 31st International Symposium on Distributed Computing (DISC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 91, pp. 45:1-45:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{calciu_et_al:LIPIcs.DISC.2017.45,
  author =	{Calciu, Irina and Sen, Siddhartha and Balakrishnan, Mahesh and Aguilera, Marcos K.},
  title =	{{Brief Announcement: Black-Box Concurrent Data Structures for NUMA Architectures}},
  booktitle =	{31st International Symposium on Distributed Computing (DISC 2017)},
  pages =	{45:1--45:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-053-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{91},
  editor =	{Richa, Andr\'{e}a},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2017.45},
  URN =		{urn:nbn:de:0030-drops-80122},
  doi =		{10.4230/LIPIcs.DISC.2017.45},
  annote =	{Keywords: concurrent data structures, log, NUMA architecture, replication}
}
  • Refine by Author
  • 2 Aguilera, Marcos K.
  • 1 Balakrishnan, Mahesh
  • 1 Ben-David, Naama
  • 1 Calciu, Irina
  • 1 Guerraoui, Rachid
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Concurrency
  • 1 Theory of computation → Concurrent algorithms
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Distributed algorithms
  • 1 Theory of computation → Distributed computing models
  • Show More...

  • Refine by Keyword
  • 1 Byzantine Failure
  • 1 Consensus
  • 1 Consistent Broadcast
  • 1 Message-and-memory
  • 1 NUMA architecture
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2017
  • 1 2020
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail