9 Search Results for "Ahn, David"


Document
The Geodesic Edge Center of a Simple Polygon

Authors: Anna Lubiw and Anurag Murty Naredla

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
The geodesic edge center of a polygon is a point c inside the polygon that minimizes the maximum geodesic distance from c to any edge of the polygon, where geodesic distance is the shortest path distance inside the polygon. We give a linear-time algorithm to find a geodesic edge center of a simple polygon. This improves on the previous O(n log n) time algorithm by Lubiw and Naredla [European Symposium on Algorithms, 2021]. The algorithm builds on an algorithm to find the geodesic vertex center of a simple polygon due to Pollack, Sharir, and Rote [Discrete & Computational Geometry, 1989] and an improvement to linear time by Ahn, Barba, Bose, De Carufel, Korman, and Oh [Discrete & Computational Geometry, 2016]. The geodesic edge center can easily be found from the geodesic farthest-edge Voronoi diagram of the polygon. Finding that Voronoi diagram in linear time is an open question, although the geodesic nearest edge Voronoi diagram (the medial axis) can be found in linear time. As a first step of our geodesic edge center algorithm, we give a linear-time algorithm to find the geodesic farthest-edge Voronoi diagram restricted to the polygon boundary.

Cite as

Anna Lubiw and Anurag Murty Naredla. The Geodesic Edge Center of a Simple Polygon. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 49:1-49:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lubiw_et_al:LIPIcs.SoCG.2023.49,
  author =	{Lubiw, Anna and Naredla, Anurag Murty},
  title =	{{The Geodesic Edge Center of a Simple Polygon}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{49:1--49:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.49},
  URN =		{urn:nbn:de:0030-drops-178994},
  doi =		{10.4230/LIPIcs.SoCG.2023.49},
  annote =	{Keywords: geodesic center of polygon, farthest edges, farthest-segment Voronoi diagram}
}
Document
Illuminating the x-Axis by α-Floodlights

Authors: Bengt J. Nilsson, David Orden, Leonidas Palios, Carlos Seara, and Paweł Żyliński

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
Given a set S of regions with piece-wise linear boundary and a positive angle α < 90°, we consider the problem of computing the locations and orientations of the minimum number of α-floodlights positioned at points in S which suffice to illuminate the entire x-axis. We show that the problem can be solved in O(n log n) time and O(n) space, where n is the number of vertices of the set S.

Cite as

Bengt J. Nilsson, David Orden, Leonidas Palios, Carlos Seara, and Paweł Żyliński. Illuminating the x-Axis by α-Floodlights. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 11:1-11:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{nilsson_et_al:LIPIcs.ISAAC.2021.11,
  author =	{Nilsson, Bengt J. and Orden, David and Palios, Leonidas and Seara, Carlos and \.{Z}yli\'{n}ski, Pawe{\l}},
  title =	{{Illuminating the x-Axis by \alpha-Floodlights}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{11:1--11:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.11},
  URN =		{urn:nbn:de:0030-drops-154444},
  doi =		{10.4230/LIPIcs.ISAAC.2021.11},
  annote =	{Keywords: Computational Geometry, Visibility, Art Gallery Problems, Floodlights}
}
Document
Selected Neighbor Degree Forest Realization

Authors: Amotz Bar-Noy, David Peleg, Dror Rawitz, and Elad Yehezkel

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
The classical degree realization problem is defined as follows: Given a sequence d̄ = (d_1,…,d_n) of positive integers, construct an n-vertex graph in which each vertex u_i has degree d_i (or decide that no such graph exists). In this article, we present and study the related selected neighbor degree realization problem, which requires that each vertex u_i of G has a neighbor of degree d_i. We solve the problem when G is required to be acyclic (i.e., a forest), and present a sufficient and necessary condition for a given sequence to be realizable.

Cite as

Amotz Bar-Noy, David Peleg, Dror Rawitz, and Elad Yehezkel. Selected Neighbor Degree Forest Realization. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 27:1-27:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{barnoy_et_al:LIPIcs.ISAAC.2021.27,
  author =	{Bar-Noy, Amotz and Peleg, David and Rawitz, Dror and Yehezkel, Elad},
  title =	{{Selected Neighbor Degree Forest Realization}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{27:1--27:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.27},
  URN =		{urn:nbn:de:0030-drops-154609},
  doi =		{10.4230/LIPIcs.ISAAC.2021.27},
  annote =	{Keywords: network realization, graph algorithms, lower bound}
}
Document
Unique-Neighbor-Like Expansion and Group-Independent Cosystolic Expansion

Authors: Tali Kaufman and David Mass

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
In recent years, high dimensional expanders have been found to have a variety of applications in theoretical computer science, such as efficient CSPs approximations, improved sampling and list-decoding algorithms, and more. Within that, an important high dimensional expansion notion is cosystolic expansion, which has found applications in the construction of efficiently decodable quantum codes and in proving lower bounds for CSPs. Cosystolic expansion is considered with systems of equations over a group where the variables and equations correspond to faces of the complex. Previous works that studied cosystolic expansion were tailored to the specific group 𝔽₂. In particular, Kaufman, Kazhdan and Lubotzky (FOCS 2014), and Evra and Kaufman (STOC 2016) in their breakthrough works, who solved a famous open question of Gromov, have studied a notion which we term "parity" expansion for small sets. They showed that small sets of k-faces have proportionally many (k+1)-faces that contain an odd number of k-faces from the set. Parity expansion for small sets could then be used to imply cosystolic expansion only over 𝔽₂. In this work we introduce a stronger unique-neighbor-like expansion for small sets. We show that small sets of k-faces have proportionally many (k+1)-faces that contain exactly one k-face from the set. This notion is fundamentally stronger than parity expansion and cannot be implied by previous works. We then show, utilizing the new unique-neighbor-like expansion notion introduced in this work, that cosystolic expansion can be made group-independent, i.e., unique-neighbor-like expansion for small sets implies cosystolic expansion over any group.

Cite as

Tali Kaufman and David Mass. Unique-Neighbor-Like Expansion and Group-Independent Cosystolic Expansion. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 56:1-56:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kaufman_et_al:LIPIcs.ISAAC.2021.56,
  author =	{Kaufman, Tali and Mass, David},
  title =	{{Unique-Neighbor-Like Expansion and Group-Independent Cosystolic Expansion}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{56:1--56:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.56},
  URN =		{urn:nbn:de:0030-drops-154898},
  doi =		{10.4230/LIPIcs.ISAAC.2021.56},
  annote =	{Keywords: High dimensional expanders, Unique-neighbor-like expansion, Cosystolic expansion}
}
Document
Computing Shapley Values for Mean Width in 3-D

Authors: Shuhao Tan

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
The Shapley value is a classical concept from game theory, which is used to evaluate the importance of a player in a cooperative setting. Assuming that players are inserted in a uniformly random order, the Shapley value of a player p is the expected increase in the value of the characteristic function when p is inserted. Cabello and Chan (SoCG 2019) recently showed how to adapt this to a geometric context on planar point sets. For example, when the characteristic function is the area of the convex hull, the Shapley value of a point is the average amount by which the convex-hull area increases when this point is added to the set. Shapley values can be viewed as an indication of the relative importance/impact of a point on the function of interest. In this paper, we present an efficient algorithm for computing Shapley values in 3-dimensional space, where the function of interest is the mean width of the point set. Our algorithm runs in O(n³log²n) time and O(n) space. This result can be generalized to any point set in d-dimensional space (d ≥ 3) to compute the Shapley values for the mean volume of the convex hull projected onto a uniformly random (d - 2)-subspace in O(n^d log²n) time and O(n) space. These results are based on a new data structure for a dynamic variant of the convolution problem, which is of independent interest. Our data structure supports incremental modifications to n-element vectors (including cyclical rotation by one position). We show that n operations can be executed in O(n log²n) time and O(n) space.

Cite as

Shuhao Tan. Computing Shapley Values for Mean Width in 3-D. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 67:1-67:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{tan:LIPIcs.ISAAC.2021.67,
  author =	{Tan, Shuhao},
  title =	{{Computing Shapley Values for Mean Width in 3-D}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{67:1--67:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.67},
  URN =		{urn:nbn:de:0030-drops-155008},
  doi =		{10.4230/LIPIcs.ISAAC.2021.67},
  annote =	{Keywords: Shapley value, mean width, dynamic convolution}
}
Document
Maximum-Weight Matching in Sliding Windows and Beyond

Authors: Leyla Biabani, Mark de Berg, and Morteza Monemizadeh

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We study the maximum-weight matching problem in the sliding-window model. In this model, we are given an adversarially ordered stream of edges of an underlying edge-weighted graph G(V,E), and a parameter L specifying the window size, and we want to maintain an approximation of the maximum-weight matching of the current graph G(t); here G(t) is defined as the subgraph of G consisting of the edges that arrived during the time interval [max(t-L,1),t], where t is the current time. The goal is to do this with Õ(n) space, where n is the number of vertices of G. We present a deterministic (3.5+ε)-approximation algorithm for this problem, thus significantly improving the (6+ε)-approximation algorithm due to Crouch and Stubbs [Michael S. Crouch and Daniel M. Stubbs, 2014]. We also present a generic machinery for approximating subadditve functions in the sliding-window model. A function f is called subadditive if for every disjoint substreams A, B of a stream S it holds that f(AB) ⩽ f(A) + f(B), where AB denotes the concatenation of A and B. We show that given an α-approximation algorithm for a subadditive function f in the insertion-only model we can maintain a (2α+ε)-approximation of f in the sliding-window model. This improves upon recent result Krauthgamer and Reitblat [Robert Krauthgamer and David Reitblat, 2019], who obtained a (2α²+ε)-approximation.

Cite as

Leyla Biabani, Mark de Berg, and Morteza Monemizadeh. Maximum-Weight Matching in Sliding Windows and Beyond. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 73:1-73:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{biabani_et_al:LIPIcs.ISAAC.2021.73,
  author =	{Biabani, Leyla and de Berg, Mark and Monemizadeh, Morteza},
  title =	{{Maximum-Weight Matching in Sliding Windows and Beyond}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{73:1--73:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.73},
  URN =		{urn:nbn:de:0030-drops-155061},
  doi =		{10.4230/LIPIcs.ISAAC.2021.73},
  annote =	{Keywords: maximum-weight matching, sliding-window model, approximation algorithm, and subadditve functions}
}
Document
On Romeo and Juliet Problems: Minimizing Distance-to-Sight

Authors: Hee-Kap Ahn, Eunjin Oh, Lena Schlipf, Fabian Stehn, and Darren Strash

Published in: LIPIcs, Volume 101, 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)


Abstract
We introduce a variant of the watchman route problem, which we call the quickest pair-visibility problem. Given two persons standing at points s and t in a simple polygon P with no holes, we want to minimize the distance these persons travel in order to see each other in P. We solve two variants of this problem, one minimizing the longer distance the two persons travel (min-max) and one minimizing the total travel distance (min-sum), optimally in linear time. We also consider a query version of this problem for the min-max variant. We can preprocess a simple n-gon in linear time so that the minimum of the longer distance the two persons travel can be computed in O(log^2 n) time for any two query positions where the two persons lie.

Cite as

Hee-Kap Ahn, Eunjin Oh, Lena Schlipf, Fabian Stehn, and Darren Strash. On Romeo and Juliet Problems: Minimizing Distance-to-Sight. In 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 101, pp. 6:1-6:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{ahn_et_al:LIPIcs.SWAT.2018.6,
  author =	{Ahn, Hee-Kap and Oh, Eunjin and Schlipf, Lena and Stehn, Fabian and Strash, Darren},
  title =	{{On Romeo and Juliet Problems: Minimizing Distance-to-Sight}},
  booktitle =	{16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)},
  pages =	{6:1--6:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-068-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{101},
  editor =	{Eppstein, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2018.6},
  URN =		{urn:nbn:de:0030-drops-88322},
  doi =		{10.4230/LIPIcs.SWAT.2018.6},
  annote =	{Keywords: Visibility polygon, shortest-path, watchman problems}
}
Document
Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams

Authors: Sagar Kale and Sumedh Tirodkar

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
We consider the maximum matching problem in the semi-streaming model formalized by Feigenbaum, Kannan, McGregor, Suri, and Zhang that is inspired by giant graphs of today. As our main result, we give a two-pass (1/2 + 1/16)-approximation algorithm for triangle-free graphs and a two-pass (1/2 + 1/32)-approximation algorithm for general graphs; these improve the approximation ratios of 1/2 + 1/52 for bipartite graphs and 1/2 + 1/140 for general graphs by Konrad, Magniez, and Mathieu. In three passes, we achieve approximation ratios of 1/2 + 1/10 for triangle-free graphs and 1/2 + 1/19.753 for general graphs. We also give a multi-pass algorithm where we bound the number of passes precisely - we give a (2/3 - epsilon)-approximation algorithm that uses 2/(3 epsilon) passes for triangle-free graphs and 4/(3 epsilon) passes for general graphs. Our algorithms are simple and combinatorial, use O(n log(n)) space, and have O(1) update time per edge. For general graphs, our multi-pass algorithm improves the best known deterministic algorithms in terms of the number of passes: * Ahn and Guha give a (2/3 - epsilon)-approximation algorithm that uses O(log(1/epsilon)/epsilon^2) passes, whereas our (2/3 - epsilon)-approximation algorithm uses 4/(epsilon) passes; * they also give a (1 - epsilon)-approximation algorithm that uses O(log(n) poly(1/epsilon)) passes, where n is the number of vertices of the input graph; although our algorithm is (2/3 - epsilon)-approximation, our number of passes do not depend on n. Earlier multi-pass algorithms either have a large constant inside big-O notation for the number of passes or the constant cannot be determined due to the involved analysis, so our multi-pass algorithm should use much fewer passes for approximation ratios bounded slightly below 2/3.

Cite as

Sagar Kale and Sumedh Tirodkar. Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 15:1-15:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{kale_et_al:LIPIcs.APPROX-RANDOM.2017.15,
  author =	{Kale, Sagar and Tirodkar, Sumedh},
  title =	{{Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{15:1--15:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.15},
  URN =		{urn:nbn:de:0030-drops-75645},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.15},
  annote =	{Keywords: Semi Streaming, Maximum Matching}
}
Document
Towards Task-Based Temporal Extraction and Recognition

Authors: David Ahn, Sisay Fissaha Adafre, and Maarten de Rijke

Published in: Dagstuhl Seminar Proceedings, Volume 5151, Annotating, Extracting and Reasoning about Time and Events (2005)


Abstract
We seek to improve the robustness and portability of temporal information extraction systems by incorporating data-driven techniques. We present two sets of experiments pointing us in this direction. The first shows that machine-learning-based recognition of temporal expressions not only achieves high accuracy on its own but can also improve rule-based normalization. The second makes use of a staged normalization architecture to experiment with machine learned classifiers for certain disambiguation sub-tasks within the normalization task.

Cite as

David Ahn, Sisay Fissaha Adafre, and Maarten de Rijke. Towards Task-Based Temporal Extraction and Recognition. In Annotating, Extracting and Reasoning about Time and Events. Dagstuhl Seminar Proceedings, Volume 5151, pp. 1-16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005)


Copy BibTex To Clipboard

@InProceedings{ahn_et_al:DagSemProc.05151.12,
  author =	{Ahn, David and Fissaha Adafre, Sisay and de Rijke, Maarten},
  title =	{{Towards Task-Based Temporal Extraction and Recognition}},
  booktitle =	{Annotating, Extracting and Reasoning about Time and Events},
  pages =	{1--16},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2005},
  volume =	{5151},
  editor =	{Graham Katz and James Pustejovsky and Frank Schilder},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.05151.12},
  URN =		{urn:nbn:de:0030-drops-3150},
  doi =		{10.4230/DagSemProc.05151.12},
  annote =	{Keywords: Information extraction, natural language, temporal reasoning, text mining}
}
  • Refine by Author
  • 1 Ahn, David
  • 1 Ahn, Hee-Kap
  • 1 Bar-Noy, Amotz
  • 1 Biabani, Leyla
  • 1 Fissaha Adafre, Sisay
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Computational geometry
  • 1 Mathematics of computing → Graph algorithms
  • 1 Mathematics of computing → Paths and connectivity problems
  • 1 Theory of computation → Computational complexity and cryptography
  • 1 Theory of computation → Data structures design and analysis
  • Show More...

  • Refine by Keyword
  • 1 Art Gallery Problems
  • 1 Computational Geometry
  • 1 Cosystolic expansion
  • 1 Floodlights
  • 1 High dimensional expanders
  • Show More...

  • Refine by Type
  • 9 document

  • Refine by Publication Year
  • 5 2021
  • 1 2005
  • 1 2017
  • 1 2018
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail