1 Search Results for "Alambardar Meybodi, Mohsen"


Document
On the Parameterized Complexity of [1,j]-Domination Problems

Authors: Mohsen Alambardar Meybodi, Fedor Fomin, Amer E. Mouawad, and Fahad Panolan

Published in: LIPIcs, Volume 122, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)


Abstract
For a graph G, a set D subseteq V(G) is called a [1,j]-dominating set if every vertex in V(G) setminus D has at least one and at most j neighbors in D. A set D subseteq V(G) is called a [1,j]-total dominating set if every vertex in V(G) has at least one and at most j neighbors in D. In the [1,j]-(Total) Dominating Set problem we are given a graph G and a positive integer k. The objective is to test whether there exists a [1,j]-(total) dominating set of size at most k. The [1,j]-Dominating Set problem is known to be NP-complete, even for restricted classes of graphs such as chordal and planar graphs, but polynomial-time solvable on split graphs. The [1,2]-Total Dominating Set problem is known to be NP-complete, even for bipartite graphs. As both problems generalize the Dominating Set problem, both are W[1]-hard when parameterized by solution size. In this work, we study [1,j]-Dominating Set on sparse graph classes from the perspective of parameterized complexity and prove the following results when the problem is parameterized by solution size: - [1,j]-Dominating Set is W[1]-hard on d-degenerate graphs for d = j + 1; - [1,j]-Dominating Set is FPT on nowhere dense graphs. We also prove that the known algorithm for [1,j]-Dominating Set on split graphs is optimal under the Strong Exponential Time Hypothesis (SETH). Finally, assuming SETH, we provide a lower bound for the running time of any algorithm solving the [1,2]-Total Dominating Set problem parameterized by pathwidth.

Cite as

Mohsen Alambardar Meybodi, Fedor Fomin, Amer E. Mouawad, and Fahad Panolan. On the Parameterized Complexity of [1,j]-Domination Problems. In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 122, pp. 34:1-34:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{alambardarmeybodi_et_al:LIPIcs.FSTTCS.2018.34,
  author =	{Alambardar Meybodi, Mohsen and Fomin, Fedor and Mouawad, Amer E. and Panolan, Fahad},
  title =	{{On the Parameterized Complexity of \lbrack1,j\rbrack-Domination Problems}},
  booktitle =	{38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)},
  pages =	{34:1--34:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-093-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{122},
  editor =	{Ganguly, Sumit and Pandya, Paritosh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2018.34},
  URN =		{urn:nbn:de:0030-drops-99330},
  doi =		{10.4230/LIPIcs.FSTTCS.2018.34},
  annote =	{Keywords: \lbrack1, j\rbrack-dominating set, parameterized complexity, sparse graphs}
}
  • Refine by Author
  • 1 Alambardar Meybodi, Mohsen
  • 1 Fomin, Fedor
  • 1 Mouawad, Amer E.
  • 1 Panolan, Fahad

  • Refine by Classification
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Design and analysis of algorithms

  • Refine by Keyword
  • 1 [1
  • 1 j]-dominating set
  • 1 parameterized complexity
  • 1 sparse graphs

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail