7 Search Results for "Avanzini, Martin"


Document
Complexity of Acyclic Term Graph Rewriting

Authors: Martin Avanzini and Georg Moser

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
Term rewriting has been used as a formal model to reason about the complexity of logic, functional, and imperative programs. In contrast to term rewriting, term graph rewriting permits sharing of common sub-expressions, and consequently is able to capture more closely reasonable implementations of rule based languages. However, the automated complexity analysis of term graph rewriting has received little to no attention. With this work, we provide first steps towards overcoming this situation. We present adaptions of two prominent complexity techniques from term rewriting, viz, the interpretation method and dependency tuples. Our adaptions are non-trivial, in the sense that they can observe not only term but also graph structures, i.e. take sharing into account. In turn, the developed methods allow us to more precisely estimate the runtime complexity of programs where sharing of sub-expressions is essential.

Cite as

Martin Avanzini and Georg Moser. Complexity of Acyclic Term Graph Rewriting. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{avanzini_et_al:LIPIcs.FSCD.2016.10,
  author =	{Avanzini, Martin and Moser, Georg},
  title =	{{Complexity of Acyclic Term Graph Rewriting}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.10},
  URN =		{urn:nbn:de:0030-drops-59901},
  doi =		{10.4230/LIPIcs.FSCD.2016.10},
  annote =	{Keywords: Program Analysis, Graph Rewriting, Complexity Analysis}
}
Document
Certification of Complexity Proofs using CeTA

Authors: Martin Avanzini, Christian Sternagel, and René Thiemann

Published in: LIPIcs, Volume 36, 26th International Conference on Rewriting Techniques and Applications (RTA 2015)


Abstract
Nowadays certification is widely employed by automated termination tools for term rewriting, where certifiers support most available techniques. In complexity analysis, the situation is quite different. Although tools support certification in principle, current certifiers implement only the most basic technique, namely, suitably tamed versions of reduction orders. As a consequence, only a small fraction of the proofs generated by state-of-the-art complexity tools can be certified. To improve upon this situation, we formalized a framework for the certification of modular complexity proofs and incorporated it into CeTA. We report on this extension and present the newly supported techniques (match-bounds, weak dependency pairs, dependency tuples, usable rules, and usable replacement maps), resulting in a significant increase in the number of certifiable complexity proofs. During our work we detected conflicts in theoretical results as well as bugs in existing complexity tools.

Cite as

Martin Avanzini, Christian Sternagel, and René Thiemann. Certification of Complexity Proofs using CeTA. In 26th International Conference on Rewriting Techniques and Applications (RTA 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 36, pp. 23-39, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{avanzini_et_al:LIPIcs.RTA.2015.23,
  author =	{Avanzini, Martin and Sternagel, Christian and Thiemann, Ren\'{e}},
  title =	{{Certification of Complexity Proofs using CeTA}},
  booktitle =	{26th International Conference on Rewriting Techniques and Applications (RTA 2015)},
  pages =	{23--39},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-85-9},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{36},
  editor =	{Fern\'{a}ndez, Maribel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2015.23},
  URN =		{urn:nbn:de:0030-drops-51875},
  doi =		{10.4230/LIPIcs.RTA.2015.23},
  annote =	{Keywords: complexity analysis, certification, match-bounds, weak dependency pairs, dependency tuples, usable rules, usable replacement maps}
}
Document
On Sharing, Memoization, and Polynomial Time

Authors: Martin Avanzini and Ugo Dal Lago

Published in: LIPIcs, Volume 30, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)


Abstract
We study how the adoption of an evaluation mechanism with sharing and memoization impacts the class of functions which can be computed in polynomial time. We first show how a natural cost model in which lookup for an already computed result has no cost is indeed invariant. As a corollary, we then prove that the most general notion of ramified recurrence is sound for polynomial time, this way settling an open problem in implicit computational complexity.

Cite as

Martin Avanzini and Ugo Dal Lago. On Sharing, Memoization, and Polynomial Time. In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 30, pp. 62-75, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{avanzini_et_al:LIPIcs.STACS.2015.62,
  author =	{Avanzini, Martin and Dal Lago, Ugo},
  title =	{{On Sharing, Memoization, and Polynomial Time}},
  booktitle =	{32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)},
  pages =	{62--75},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-78-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{30},
  editor =	{Mayr, Ernst W. and Ollinger, Nicolas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.62},
  URN =		{urn:nbn:de:0030-drops-49042},
  doi =		{10.4230/LIPIcs.STACS.2015.62},
  annote =	{Keywords: implicit computational complexity, data-tiering, polynomial time}
}
Document
A Combination Framework for Complexity

Authors: Martin Avanzini and Georg Moser

Published in: LIPIcs, Volume 21, 24th International Conference on Rewriting Techniques and Applications (RTA 2013)


Abstract
In this paper we present a combination framework for the automated polynomial complexity analysis of term rewrite systems. The framework covers both derivational and runtime complexity analysis, and is employed as theoretical foundation in the automated complexity tool TCT. We present generalisations of powerful complexity techniques, notably a generalisation of complexity pairs and (weak) dependency pairs. Finally, we also present a novel technique, called dependency graph decomposition, that in the dependency pair setting greatly increases modularity.

Cite as

Martin Avanzini and Georg Moser. A Combination Framework for Complexity. In 24th International Conference on Rewriting Techniques and Applications (RTA 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 21, pp. 55-70, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{avanzini_et_al:LIPIcs.RTA.2013.55,
  author =	{Avanzini, Martin and Moser, Georg},
  title =	{{A Combination Framework for Complexity}},
  booktitle =	{24th International Conference on Rewriting Techniques and Applications (RTA 2013)},
  pages =	{55--70},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-53-8},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{21},
  editor =	{van Raamsdonk, Femke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2013.55},
  URN =		{urn:nbn:de:0030-drops-40534},
  doi =		{10.4230/LIPIcs.RTA.2013.55},
  annote =	{Keywords: program analysis, term rewriting, complexity analysis, automation}
}
Document
Tyrolean Complexity Tool: Features and Usage

Authors: Martin Avanzini and Georg Moser

Published in: LIPIcs, Volume 21, 24th International Conference on Rewriting Techniques and Applications (RTA 2013)


Abstract
The Tyrolean Complexity Tool, TCT for short, is an open source complexity analyser for term rewrite systems. Our tool TCT features a majority of the known techniques for the automated characterisation of polynomial complexity of rewrite systems and can investigate derivational and runtime complexity, for full and innermost rewriting. This system description outlines features and provides a short introduction to the usage of TCT.

Cite as

Martin Avanzini and Georg Moser. Tyrolean Complexity Tool: Features and Usage. In 24th International Conference on Rewriting Techniques and Applications (RTA 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 21, pp. 71-80, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{avanzini_et_al:LIPIcs.RTA.2013.71,
  author =	{Avanzini, Martin and Moser, Georg},
  title =	{{Tyrolean Complexity Tool: Features and Usage}},
  booktitle =	{24th International Conference on Rewriting Techniques and Applications (RTA 2013)},
  pages =	{71--80},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-53-8},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{21},
  editor =	{van Raamsdonk, Femke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2013.71},
  URN =		{urn:nbn:de:0030-drops-40540},
  doi =		{10.4230/LIPIcs.RTA.2013.71},
  annote =	{Keywords: program analysis, term rewriting, complexity analysis, automation}
}
Document
A Path Order for Rewrite Systems that Compute Exponential Time Functions

Authors: Martin Avanzini, Naohi Eguchi, and Georg Moser

Published in: LIPIcs, Volume 10, 22nd International Conference on Rewriting Techniques and Applications (RTA'11) (2011)


Abstract
In this paper we present a new path order for rewrite systems, the exponential path order EPO*. Suppose a term rewrite system is compatible with EPO*, then the runtime complexity of this rewrite system is bounded from above by an exponential function. Furthermore, the class of function computed by a rewrite system compatible with EPO* equals the class of functions computable in exponential time on a Turing machine.

Cite as

Martin Avanzini, Naohi Eguchi, and Georg Moser. A Path Order for Rewrite Systems that Compute Exponential Time Functions. In 22nd International Conference on Rewriting Techniques and Applications (RTA'11). Leibniz International Proceedings in Informatics (LIPIcs), Volume 10, pp. 123-138, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{avanzini_et_al:LIPIcs.RTA.2011.123,
  author =	{Avanzini, Martin and Eguchi, Naohi and Moser, Georg},
  title =	{{A Path Order for Rewrite Systems that Compute Exponential Time Functions}},
  booktitle =	{22nd International Conference on Rewriting Techniques and Applications (RTA'11)},
  pages =	{123--138},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-30-9},
  ISSN =	{1868-8969},
  year =	{2011},
  volume =	{10},
  editor =	{Schmidt-Schauss, Manfred},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2011.123},
  URN =		{urn:nbn:de:0030-drops-31127},
  doi =		{10.4230/LIPIcs.RTA.2011.123},
  annote =	{Keywords: Runtime Complexity, Exponential Time Functions, Implicit Computational Complexity}
}
Document
Closing the Gap Between Runtime Complexity and Polytime Computability

Authors: Martin Avanzini and Georg Moser

Published in: LIPIcs, Volume 6, Proceedings of the 21st International Conference on Rewriting Techniques and Applications (2010)


Abstract
In earlier work, we have shown that for confluent TRSs, innermost polynomial runtime complexity induces polytime computability of the functions defined. In this paper, we generalise this result to full rewriting, for that we exploit graph rewriting. We give a new proof of the adequacy of graph rewriting for full rewriting that allows for a precise control of the resources copied. In sum we completely describe an implementation of rewriting on a Turing machine (TM for short). We show that the runtime complexity of the TRS and the runtime complexity of the TM is polynomially related. Our result strengthens the evidence that the complexity of a rewrite system is truthfully represented through the length of derivations. Moreover our result allows the classification of nondeterministic polytime-computation based on runtime complexity analysis of rewrite systems.

Cite as

Martin Avanzini and Georg Moser. Closing the Gap Between Runtime Complexity and Polytime Computability. In Proceedings of the 21st International Conference on Rewriting Techniques and Applications. Leibniz International Proceedings in Informatics (LIPIcs), Volume 6, pp. 33-48, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{avanzini_et_al:LIPIcs.RTA.2010.33,
  author =	{Avanzini, Martin and Moser, Georg},
  title =	{{Closing the Gap Between Runtime Complexity and Polytime Computability}},
  booktitle =	{Proceedings of the 21st International Conference on Rewriting Techniques and Applications},
  pages =	{33--48},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-18-7},
  ISSN =	{1868-8969},
  year =	{2010},
  volume =	{6},
  editor =	{Lynch, Christopher},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2010.33},
  URN =		{urn:nbn:de:0030-drops-26436},
  doi =		{10.4230/LIPIcs.RTA.2010.33},
  annote =	{Keywords: Term rewriting, graph rewriting, complexity analysis, polytime computability}
}
  • Refine by Author
  • 7 Avanzini, Martin
  • 5 Moser, Georg
  • 1 Dal Lago, Ugo
  • 1 Eguchi, Naohi
  • 1 Sternagel, Christian
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 4 complexity analysis
  • 2 automation
  • 2 program analysis
  • 2 term rewriting
  • 1 Complexity Analysis
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 2 2013
  • 2 2015
  • 1 2010
  • 1 2011
  • 1 2016

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail