1309 Search Results for "B�rczi, Krist�f"


Document
Network Attack Detection and Defense - AI-Powered Threats and Responses (Dagstuhl Seminar 23431)

Authors: Sven Dietrich, Frank Kargl, Hartmut König, Pavel Laskov, and Artur Hermann

Published in: Dagstuhl Reports, Volume 13, Issue 10 (2024)


Abstract
This report documents the program and the findings of Dagstuhl Seminar 23431 "Network Attack Detection and Defense - AI-Powered Threats and Responses". With the emergence of artificial intelligence (AI), attack detection and defense are taking on a new level of quality. Artificial intelligence will promote further automation of attacks. There are already examples of this, such as the Deep Locker malware. It is expected that we will soon face a situation in which malware and attacks will become more and more automated, intelligent, and AI-powered. Consequently, today’s threat response systems will become more and more inadequate, especially when they rely on manual intervention of security experts and analysts. The main objective of the seminar was to assess the state of the art and potentials that AI advances create for both attackers and defenders. The seminar continued the series of Dagstuhl events "Network Attack Detection and Defense" held in 2008, 2012, 2014, and 2016. The objectives of the seminar were threefold, namely (1) to investigate various scenarios of AI-based malware and attacks, (2) to debate trust in AI and modeling of threats against AI, and (3) to propose methods and strategies for AI-powered network defenses. At the seminar, which brought together participants from academia and industry, we stated that recent advances in artificial intelligence have opened up new possibilities for each of these directions. In general, more and more researchers in networking and security look at AI-based methods which made this a timely event to assess and categorize the state of the art as well as work towards a roadmap for future research. The outcome of the discussions and the proposed research directions are presented in this report.

Cite as

Sven Dietrich, Frank Kargl, Hartmut König, Pavel Laskov, and Artur Hermann. Network Attack Detection and Defense - AI-Powered Threats and Responses (Dagstuhl Seminar 23431). In Dagstuhl Reports, Volume 13, Issue 10, pp. 90-129, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{dietrich_et_al:DagRep.13.10.90,
  author =	{Dietrich, Sven and Kargl, Frank and K\"{o}nig, Hartmut and Laskov, Pavel and Hermann, Artur},
  title =	{{Network Attack Detection and Defense - AI-Powered Threats and Responses (Dagstuhl Seminar 23431)}},
  pages =	{90--129},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{10},
  editor =	{Dietrich, Sven and Kargl, Frank and K\"{o}nig, Hartmut and Laskov, Pavel and Hermann, Artur},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.10.90},
  URN =		{urn:nbn:de:0030-drops-198365},
  doi =		{10.4230/DagRep.13.10.90},
  annote =	{Keywords: artificial intelligence, cybersecurity, intrusion detection, machine learning}
}
Document
The Importance of Parameters in Database Queries

Authors: Martin Grohe, Benny Kimelfeld, Peter Lindner, and Christoph Standke

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
We propose and study a framework for quantifying the importance of the choices of parameter values to the result of a query over a database. These parameters occur as constants in logical queries, such as conjunctive queries. In our framework, the importance of a parameter is its SHAP score. This score is a popular instantiation of the game-theoretic Shapley value to measuring the importance of feature values in machine learning models. We make the case for the rationale of using this score by explaining the intuition behind SHAP, and by showing that we arrive at this score in two different, apparently opposing, approaches to quantifying the contribution of a parameter. The application of the SHAP score requires two components in addition to the query and the database: (a) a probability distribution over the combinations of parameter values, and (b) a utility function that measures the similarity between the result for the original parameters and the result for hypothetical parameters. The main question addressed in the paper is the complexity of calculating the SHAP score for different distributions and similarity measures. We first address the case of probabilistically independent parameters. The problem is hard if we consider a fragment of queries that is hard to evaluate (as one would expect), and even for the fragment of acyclic conjunctive queries. In some cases, though, one can efficiently list all relevant parameter combinations, and then the SHAP score can be computed in polynomial time under reasonable general conditions. Also tractable is the case of full acyclic conjunctive queries for certain (natural) similarity functions. We extend our results to conjunctive queries with inequalities between variables and parameters. Finally, we discuss a simple approximation technique for the case of correlated parameters.

Cite as

Martin Grohe, Benny Kimelfeld, Peter Lindner, and Christoph Standke. The Importance of Parameters in Database Queries. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grohe_et_al:LIPIcs.ICDT.2024.14,
  author =	{Grohe, Martin and Kimelfeld, Benny and Lindner, Peter and Standke, Christoph},
  title =	{{The Importance of Parameters in Database Queries}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.14},
  URN =		{urn:nbn:de:0030-drops-197966},
  doi =		{10.4230/LIPIcs.ICDT.2024.14},
  annote =	{Keywords: SHAP score, query parameters, Shapley value}
}
Document
Subgraph Enumeration in Optimal I/O Complexity

Authors: Shiyuan Deng and Yufei Tao

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
Given a massive data graph G = (V, E) and a small pattern graph Q, the goal of subgraph enumeration is to list all the subgraphs of G isomorphic to Q. In the external memory (EM) model, it is well-known that every indivisible algorithm must perform Ω({|E|^ρ}/{M^{ρ-1} B}) I/Os in the worst case, where M represents the number of words in (internal) memory, B denotes the number of words in a disk block, and ρ is the fractional edge covering number of Q. It has been a longstanding open problem to design an algorithm to match this lower bound. The state of the art is an algorithm in ICDT'23 that achieves an I/O complexity of O({|E|^ρ}/{M^{ρ-1} B} log_{M/B} |E|/B) with high probability. In this paper, we remove the log_{M/B} |E|/B factor, thereby settling the open problem when randomization is permitted.

Cite as

Shiyuan Deng and Yufei Tao. Subgraph Enumeration in Optimal I/O Complexity. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 21:1-21:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{deng_et_al:LIPIcs.ICDT.2024.21,
  author =	{Deng, Shiyuan and Tao, Yufei},
  title =	{{Subgraph Enumeration in Optimal I/O Complexity}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{21:1--21:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.21},
  URN =		{urn:nbn:de:0030-drops-198033},
  doi =		{10.4230/LIPIcs.ICDT.2024.21},
  annote =	{Keywords: Subgraph Enumeration, Conjunctive Queries, External Memory, Algorithms}
}
Document
Invited Talk
Polynomial-Time Pseudodeterministic Constructions (Invited Talk)

Authors: Igor C. Oliveira

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
A randomised algorithm for a search problem is pseudodeterministic if it produces a fixed canonical solution to the search problem with high probability. In their seminal work on the topic, Gat and Goldwasser (2011) posed as their main open problem whether prime numbers can be pseudodeterministically constructed in polynomial time. We provide a positive solution to this question in the infinitely-often regime. In more detail, we give an unconditional polynomial-time randomised algorithm B such that, for infinitely many values of n, B(1ⁿ) outputs a canonical n-bit prime p_n with high probability. More generally, we prove that for every dense property Q of strings that can be decided in polynomial time, there is an infinitely-often pseudodeterministic polynomial-time construction of strings satisfying Q. This improves upon a subexponential-time pseudodeterministic construction of Oliveira and Santhanam (2017). This talk will cover the main ideas behind these constructions and discuss their implications, such as the existence of infinitely many primes with succinct and efficient representations.

Cite as

Igor C. Oliveira. Polynomial-Time Pseudodeterministic Constructions (Invited Talk). In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, p. 1:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{oliveira:LIPIcs.STACS.2024.1,
  author =	{Oliveira, Igor C.},
  title =	{{Polynomial-Time Pseudodeterministic Constructions}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.1},
  URN =		{urn:nbn:de:0030-drops-197112},
  doi =		{10.4230/LIPIcs.STACS.2024.1},
  annote =	{Keywords: Pseudorandomness, Explicit Constructions, Pseudodeterministic Algorithms}
}
Document
A Characterization of Efficiently Compilable Constraint Languages

Authors: Christoph Berkholz, Stefan Mengel, and Hermann Wilhelm

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
A central task in knowledge compilation is to compile a CNF-SAT instance into a succinct representation format that allows efficient operations such as testing satisfiability, counting, or enumerating all solutions. Useful representation formats studied in this area range from ordered binary decision diagrams (OBDDs) to circuits in decomposable negation normal form (DNNFs). While it is known that there exist CNF formulas that require exponential size representations, the situation is less well studied for other types of constraints than Boolean disjunctive clauses. The constraint satisfaction problem (CSP) is a powerful framework that generalizes CNF-SAT by allowing arbitrary sets of constraints over any finite domain. The main goal of our work is to understand for which type of constraints (also called the constraint language) it is possible to efficiently compute representations of polynomial size. We answer this question completely and prove two tight characterizations of efficiently compilable constraint languages, depending on whether target format is structured. We first identify the combinatorial property of "strong blockwise decomposability" and show that if a constraint language has this property, we can compute DNNF representations of linear size. For all other constraint languages we construct families of CSP-instances that provably require DNNFs of exponential size. For a subclass of "strong uniformly blockwise decomposable" constraint languages we obtain a similar dichotomy for structured DNNFs. In fact, strong (uniform) blockwise decomposability even allows efficient compilation into multi-valued analogs of OBDDs and FBDDs, respectively. Thus, we get complete characterizations for all knowledge compilation classes between O(B)DDs and DNNFs.

Cite as

Christoph Berkholz, Stefan Mengel, and Hermann Wilhelm. A Characterization of Efficiently Compilable Constraint Languages. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berkholz_et_al:LIPIcs.STACS.2024.11,
  author =	{Berkholz, Christoph and Mengel, Stefan and Wilhelm, Hermann},
  title =	{{A Characterization of Efficiently Compilable Constraint Languages}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.11},
  URN =		{urn:nbn:de:0030-drops-197214},
  doi =		{10.4230/LIPIcs.STACS.2024.11},
  annote =	{Keywords: constraint satisfaction, knowledge compilation, dichotomy, DNNF}
}
Document
A Subquadratic Bound for Online Bisection

Authors: Marcin Bienkowski and Stefan Schmid

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The online bisection problem is a natural dynamic variant of the classic optimization problem, where one has to dynamically maintain a partition of n elements into two clusters of cardinality n/2. During runtime, an online algorithm is given a sequence of requests, each being a pair of elements: an inter-cluster request costs one unit while an intra-cluster one is free. The algorithm may change the partition, paying a unit cost for each element that changes its cluster. This natural problem admits a simple deterministic O(n²)-competitive algorithm [Avin et al., DISC 2016]. While several significant improvements over this result have been obtained since the original work, all of them either limit the generality of the input or assume some form of resource augmentation (e.g., larger clusters). Moreover, the algorithm of Avin et al. achieves the best known competitive ratio even if randomization is allowed. In this paper, we present the first randomized online algorithm that breaks this natural quadratic barrier and achieves a competitive ratio of Õ(n^{23/12}) without resource augmentation and for an arbitrary sequence of requests.

Cite as

Marcin Bienkowski and Stefan Schmid. A Subquadratic Bound for Online Bisection. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 14:1-14:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bienkowski_et_al:LIPIcs.STACS.2024.14,
  author =	{Bienkowski, Marcin and Schmid, Stefan},
  title =	{{A Subquadratic Bound for Online Bisection}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{14:1--14:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.14},
  URN =		{urn:nbn:de:0030-drops-197247},
  doi =		{10.4230/LIPIcs.STACS.2024.14},
  annote =	{Keywords: Bisection, Graph Partitioning, online balanced Repartitioning, online Algorithms, competitive Analysis}
}
Document
An Improved Approximation Algorithm for Dynamic Minimum Linear Arrangement

Authors: Marcin Bienkowski and Guy Even

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The dynamic offline linear arrangement problem deals with reordering n elements subject to a sequence of edge requests. The input consists of a sequence of m edges (i.e., unordered pairs of elements). The output is a sequence of permutations (i.e., bijective mapping of the elements to n equidistant points). In step t, the order of the elements is changed to the t-th permutation, and then the t-th request is served. The cost of the output consists of two parts per step: request cost and rearrangement cost. The former is the current distance between the endpoints of the request, while the latter is proportional to the number of adjacent element swaps required to move from one permutation to the consecutive permutation. The goal is to find a minimum cost solution. We present a deterministic O(log n log log n)-approximation algorithm for this problem, improving over a randomized O(log² n)-approximation by Olver et al. [Neil Olver et al., 2018]. Our algorithm is based on first solving spreading-metric LP relaxation on a time-expanded graph, applying a tree decomposition on the basis of the LP solution, and finally converting the tree decomposition to a sequence of permutations. The techniques we employ are general and have the potential to be useful for other dynamic graph optimization problems.

Cite as

Marcin Bienkowski and Guy Even. An Improved Approximation Algorithm for Dynamic Minimum Linear Arrangement. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bienkowski_et_al:LIPIcs.STACS.2024.15,
  author =	{Bienkowski, Marcin and Even, Guy},
  title =	{{An Improved Approximation Algorithm for Dynamic Minimum Linear Arrangement}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{15:1--15:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.15},
  URN =		{urn:nbn:de:0030-drops-197252},
  doi =		{10.4230/LIPIcs.STACS.2024.15},
  annote =	{Keywords: Minimum Linear Arrangement, dynamic Variant, Optimization Problems, Graph Problems, approximation Algorithms}
}
Document
Gapped String Indexing in Subquadratic Space and Sublinear Query Time

Authors: Philip Bille, Inge Li Gørtz, Moshe Lewenstein, Solon P. Pissis, Eva Rotenberg, and Teresa Anna Steiner

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In Gapped String Indexing, the goal is to compactly represent a string S of length n such that for any query consisting of two strings P₁ and P₂, called patterns, and an integer interval [α, β], called gap range, we can quickly find occurrences of P₁ and P₂ in S with distance in [α, β]. Gapped String Indexing is a central problem in computational biology and text mining and has thus received significant research interest, including parameterized and heuristic approaches. Despite this interest, the best-known time-space trade-offs for Gapped String Indexing are the straightforward 𝒪(n) space and 𝒪(n+ occ) query time or Ω(n²) space and Õ(|P₁| + |P₂| + occ) query time. We break through this barrier obtaining the first interesting trade-offs with polynomially subquadratic space and polynomially sublinear query time. In particular, we show that, for every 0 ≤ δ ≤ 1, there is a data structure for Gapped String Indexing with either Õ(n^{2-δ/3}) or Õ(n^{3-2δ}) space and Õ(|P₁| + |P₂| + n^{δ}⋅ (occ+1)) query time, where occ is the number of reported occurrences. As a new fundamental tool towards obtaining our main result, we introduce the Shifted Set Intersection problem: preprocess a collection of sets S₁, …, S_k of integers such that for any query consisting of three integers i,j,s, we can quickly output YES if and only if there exist a ∈ S_i and b ∈ S_j with a+s = b. We start by showing that the Shifted Set Intersection problem is equivalent to the indexing variant of 3SUM (3SUM Indexing) [Golovnev et al., STOC 2020]. We then give a data structure for Shifted Set Intersection with gaps, which entails a solution to the Gapped String Indexing problem. Furthermore, we enhance our data structure for deciding Shifted Set Intersection, so that we can support the reporting variant of the problem, i.e., outputting all certificates in the affirmative case. Via the obtained equivalence to 3SUM Indexing, we thus give new improved data structures for the reporting variant of 3SUM Indexing, and we show how this improves upon the state-of-the-art solution for Jumbled Indexing [Chan and Lewenstein, STOC 2015] for any alphabet of constant size σ > 5.

Cite as

Philip Bille, Inge Li Gørtz, Moshe Lewenstein, Solon P. Pissis, Eva Rotenberg, and Teresa Anna Steiner. Gapped String Indexing in Subquadratic Space and Sublinear Query Time. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 16:1-16:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bille_et_al:LIPIcs.STACS.2024.16,
  author =	{Bille, Philip and G{\o}rtz, Inge Li and Lewenstein, Moshe and Pissis, Solon P. and Rotenberg, Eva and Steiner, Teresa Anna},
  title =	{{Gapped String Indexing in Subquadratic Space and Sublinear Query Time}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{16:1--16:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.16},
  URN =		{urn:nbn:de:0030-drops-197262},
  doi =		{10.4230/LIPIcs.STACS.2024.16},
  annote =	{Keywords: data structures, string indexing, indexing with gaps, two patterns}
}
Document
Removable Online Knapsack and Advice

Authors: Hans-Joachim Böckenhauer, Fabian Frei, and Peter Rossmanith

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In the proportional knapsack problem, we are given a knapsack of some capacity and a set of variably sized items. The goal is to pack a selection of these items that fills the knapsack as much as possible. The online version of this problem reveals the items and their sizes not all at once but one by one. For each item, the algorithm has to decide immediately whether to pack it or not. We consider a natural variant of this online knapsack problem, which has been coined removable knapsack. It differs from the classical variant by allowing the removal of any packed item from the knapsack. Repacking is impossible, however: Once an item is removed, it is gone for good. We analyze the advice complexity of this problem. It measures how many advice bits an omniscient oracle needs to provide for an online algorithm to reach any given competitive ratio, which is - understood in its strict sense - just the algorithm’s approximation factor. The online knapsack problem is known for its peculiar advice behavior involving three jumps in competitivity. We show that the advice complexity of the version with removability is quite different but just as interesting: The competitivity starts from the golden ratio when no advice is given. It then drops down to 1+ε for a constant amount of advice already, which requires logarithmic advice in the classical version. Removability comes as no relief to the perfectionist, however: Optimality still requires linear advice as before. These results are particularly noteworthy from a structural viewpoint for the exceptionally slow transition from near-optimality to optimality. Our most important and demanding result shows that the general knapsack problem, which allows an item’s value to differ from its size, exhibits a similar behavior for removability, but with an even more pronounced jump from an unbounded competitive ratio to near-optimality within just constantly many advice bits. This is a unique behavior among the problems considered in the literature so far. An advice analysis is interesting in its own right, as it allows us to measure the information content of a problem and leads to structural insights. But it also provides insurmountable lower bounds, applicable to any kind of additional information about the instances, including predictions provided by machine-learning algorithms and artificial intelligence. Unexpectedly, advice algorithms are useful in various real-life situations, too. For example, they provide smart strategies for cooperation in winner-take-all competitions, where several participants pool together to implement different strategies and share the obtained prize. Further illustrating the versatility of our advice-complexity bounds, our results automatically improve some of the best known lower bounds on the competitive ratio for removable knapsack with randomization. The presented advice algorithms also automatically yield deterministic algorithms for established deterministic models such as knapsack with a resource buffer and various problems with more than one knapsack. In their seminal paper introducing removability to the knapsack problem, Iwama and Taketomi have indeed proposed a multiple knapsack problem for which we can establish a one-to-one correspondence with the advice model; this paper therefore even provides a comprehensive analysis for this up until now neglected problem.

Cite as

Hans-Joachim Böckenhauer, Fabian Frei, and Peter Rossmanith. Removable Online Knapsack and Advice. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 18:1-18:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bockenhauer_et_al:LIPIcs.STACS.2024.18,
  author =	{B\"{o}ckenhauer, Hans-Joachim and Frei, Fabian and Rossmanith, Peter},
  title =	{{Removable Online Knapsack and Advice}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{18:1--18:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.18},
  URN =		{urn:nbn:de:0030-drops-197283},
  doi =		{10.4230/LIPIcs.STACS.2024.18},
  annote =	{Keywords: Removable Online Knapsack, Multiple Knapsack, Advice Analysis, Advice Applications, Machine Learning and AI}
}
Document
The Complexity of Homomorphism Reconstructibility

Authors: Jan Böker, Louis Härtel, Nina Runde, Tim Seppelt, and Christoph Standke

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Representing graphs by their homomorphism counts has led to the beautiful theory of homomorphism indistinguishability in recent years. Moreover, homomorphism counts have promising applications in database theory and machine learning, where one would like to answer queries or classify graphs solely based on the representation of a graph G as a finite vector of homomorphism counts from some fixed finite set of graphs to G. We study the computational complexity of the arguably most fundamental computational problem associated to these representations, the homomorphism reconstructability problem: given a finite sequence of graphs and a corresponding vector of natural numbers, decide whether there exists a graph G that realises the given vector as the homomorphism counts from the given graphs. We show that this problem yields a natural example of an NP^#𝖯-hard problem, which still can be NP-hard when restricted to a fixed number of input graphs of bounded treewidth and a fixed input vector of natural numbers, or alternatively, when restricted to a finite input set of graphs. We further show that, when restricted to a finite input set of graphs and given an upper bound on the order of the graph G as additional input, the problem cannot be NP-hard unless 𝖯 = NP. For this regime, we obtain partial positive results. We also investigate the problem’s parameterised complexity and provide fpt-algorithms for the case that a single graph is given and that multiple graphs of the same order with subgraph instead of homomorphism counts are given.

Cite as

Jan Böker, Louis Härtel, Nina Runde, Tim Seppelt, and Christoph Standke. The Complexity of Homomorphism Reconstructibility. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 19:1-19:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{boker_et_al:LIPIcs.STACS.2024.19,
  author =	{B\"{o}ker, Jan and H\"{a}rtel, Louis and Runde, Nina and Seppelt, Tim and Standke, Christoph},
  title =	{{The Complexity of Homomorphism Reconstructibility}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{19:1--19:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.19},
  URN =		{urn:nbn:de:0030-drops-197298},
  doi =		{10.4230/LIPIcs.STACS.2024.19},
  annote =	{Keywords: graph homomorphism, counting complexity, parameterised complexity}
}
Document
Depth-3 Circuit Lower Bounds for k-OV

Authors: Tameem Choudhury and Karteek Sreenivasaiah

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The 2-Orthogonal Vectors (2-OV) problem is the following: given two tuples A and B of n Boolean vectors, each of dimension d, decide if there exist vectors u ∈ A, and v ∈ B, such that u and v are orthogonal. This problem, and its generalization k-OV defined analogously for k tuples, are central problems in the area of fine-grained complexity. One of the major conjectures in fine-grained complexity is that k-OV cannot be solved by a randomised algorithm in n^{k-ε}poly(d) time for any constant ε > 0. In this paper, we are interested in unconditional lower bounds against k-OV, but for weaker models of computation than the general Turing Machine. In particular, we are interested in circuit lower bounds to computing k-OV by Boolean circuit families of depth 3 of the form OR-AND-OR, or equivalently, a disjunction of CNFs. We show that for all k ≤ d, any disjunction of t-CNFs computing k-OV requires size Ω((n/t)^k). In particular, when k is a constant, any disjunction of k-CNFs computing k-OV needs to use Ω(n^k) CNFs. This matches the brute-force construction, and for each fixed k > 2, this is the first unconditional Ω(n^k) lower bound against k-OV for a computation model that can compute it in size O(n^k). Our results partially resolve a conjecture by Kane and Williams [Daniel M. Kane and Richard Ryan Williams, 2019] (page 12, conjecture 10) about depth-3 AC⁰ circuits computing 2-OV. As a secondary result, we show an exponential lower bound on the size of AND∘OR∘AND circuits computing 2-OV when d is very large. Since 2-OV reduces to k-OV by projections trivially, this lower bound works against k-OV as well.

Cite as

Tameem Choudhury and Karteek Sreenivasaiah. Depth-3 Circuit Lower Bounds for k-OV. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{choudhury_et_al:LIPIcs.STACS.2024.25,
  author =	{Choudhury, Tameem and Sreenivasaiah, Karteek},
  title =	{{Depth-3 Circuit Lower Bounds for k-OV}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.25},
  URN =		{urn:nbn:de:0030-drops-197359},
  doi =		{10.4230/LIPIcs.STACS.2024.25},
  annote =	{Keywords: fine grained complexity, k-OV, circuit lower bounds, depth-3 circuits}
}
Document
Semënov Arithmetic, Affine {VASS}, and String Constraints

Authors: Andrei Draghici, Christoph Haase, and Florin Manea

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We study extensions of Semënov arithmetic, the first-order theory of the structure ⟨ℕ,+,2^x⟩. It is well-known that this theory becomes undecidable when extended with regular predicates over tuples of number strings, such as the Büchi V₂-predicate. We therefore restrict ourselves to the existential theory of Semënov arithmetic and show that this theory is decidable in EXPSPACE when extended with arbitrary regular predicates over tuples of number strings. Our approach relies on a reduction to the language emptiness problem for a restricted class of affine vector addition systems with states, which we show decidable in EXPSPACE. As an application of our result, we settle an open problem from the literature and show decidability of a class of string constraints involving length constraints.

Cite as

Andrei Draghici, Christoph Haase, and Florin Manea. Semënov Arithmetic, Affine {VASS}, and String Constraints. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 29:1-29:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{draghici_et_al:LIPIcs.STACS.2024.29,
  author =	{Draghici, Andrei and Haase, Christoph and Manea, Florin},
  title =	{{Sem\"{e}nov Arithmetic, Affine \{VASS\}, and String Constraints}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{29:1--29:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.29},
  URN =		{urn:nbn:de:0030-drops-197393},
  doi =		{10.4230/LIPIcs.STACS.2024.29},
  annote =	{Keywords: arithmetic theories, B\"{u}chi arithmetic, exponentiation, vector addition systems with states, string constraints}
}
Document
Circuit Equivalence in 2-Nilpotent Algebras

Authors: Piotr Kawałek, Michael Kompatscher, and Jacek Krzaczkowski

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The circuit equivalence problem Ceqv(A) of a finite algebra A is the problem of deciding whether two circuits over A compute the same function or not. This problem not only generalises the equivalence problem for Boolean circuits, but is also of interest in universal algebra, as it models the problem of checking identities in A. In this paper we prove that Ceqv(A) ∈ 𝖯, if A is a finite 2-nilpotent algebra from a congruence modular variety.

Cite as

Piotr Kawałek, Michael Kompatscher, and Jacek Krzaczkowski. Circuit Equivalence in 2-Nilpotent Algebras. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 45:1-45:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kawalek_et_al:LIPIcs.STACS.2024.45,
  author =	{Kawa{\l}ek, Piotr and Kompatscher, Michael and Krzaczkowski, Jacek},
  title =	{{Circuit Equivalence in 2-Nilpotent Algebras}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{45:1--45:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.45},
  URN =		{urn:nbn:de:0030-drops-197554},
  doi =		{10.4230/LIPIcs.STACS.2024.45},
  annote =	{Keywords: circuit equivalence, identity checking, nilpotent algebra}
}
Document
Positionality in Σ⁰₂ and a Completeness Result

Authors: Pierre Ohlmann and Michał Skrzypczak

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We study the existence of positional strategies for the protagonist in infinite duration games over arbitrary game graphs. We prove that prefix-independent objectives in Σ⁰₂ which are positional and admit a (strongly) neutral letter are exactly those that are recognised by history-deterministic monotone co-Büchi automata over countable ordinals. This generalises a criterion proposed by [Kopczyński, ICALP 2006] and gives an alternative proof of closure under union for these objectives, which was known from [Ohlmann, TheoretiCS 2023]. We then give two applications of our result. First, we prove that the mean-payoff objective is positional over arbitrary game graphs. Second, we establish the following completeness result: for any objective W which is prefix-independent, admits a (weakly) neutral letter, and is positional over finite game graphs, there is an objective W' which is equivalent to W over finite game graphs and positional over arbitrary game graphs.

Cite as

Pierre Ohlmann and Michał Skrzypczak. Positionality in Σ⁰₂ and a Completeness Result. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 54:1-54:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ohlmann_et_al:LIPIcs.STACS.2024.54,
  author =	{Ohlmann, Pierre and Skrzypczak, Micha{\l}},
  title =	{{Positionality in \Sigma⁰₂ and a Completeness Result}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{54:1--54:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.54},
  URN =		{urn:nbn:de:0030-drops-197643},
  doi =		{10.4230/LIPIcs.STACS.2024.54},
  annote =	{Keywords: infinite duration games, positionality, Borel class \Sigma⁰₂, history determinism}
}
Document
Embedded Multi-Core Code Generation with Cross-Layer Parallelization

Authors: Oliver Oey, Michael Huebner, Timo Stripf, and Juergen Becker

Published in: OASIcs, Volume 116, 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)


Abstract
In this paper, we present a method for optimizing C code for embedded multi-core systems using cross-layer parallelization. The method has two phases. The first is to develop the algorithm without any optimization for the target platform. Then, the second step is to optimize and parallelize the code across four defined layers which are the algorithm, code, task, and data layers, for efficient execution on the target hardware. Each layer is focused on selected hardware characteristics. By using an iterative approach, individual kernels and composite algorithms can be very well adapted to execution on the hardware without further adaptation of the algorithm itself. The realization of this cross-layer parallelization consists of algorithm recognition, code transformations, task distribution, and insertion of synchronization and communication statements. The method is evaluated first on a common kernel and then on a sample image processing algorithm to showcase the benefits of the approach. Compared to other methods that only rely on two or three of these layers, 20 to 30 % of additional performance gain can be achieved.

Cite as

Oliver Oey, Michael Huebner, Timo Stripf, and Juergen Becker. Embedded Multi-Core Code Generation with Cross-Layer Parallelization. In 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024). Open Access Series in Informatics (OASIcs), Volume 116, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{oey_et_al:OASIcs.PARMA-DITAM.2024.5,
  author =	{Oey, Oliver and Huebner, Michael and Stripf, Timo and Becker, Juergen},
  title =	{{Embedded Multi-Core Code Generation with Cross-Layer Parallelization}},
  booktitle =	{15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)},
  pages =	{5:1--5:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-307-2},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{116},
  editor =	{Bispo, Jo\~{a}o and Xydis, Sotirios and Curzel, Serena and Sousa, Lu{\'\i}s Miguel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2024.5},
  URN =		{urn:nbn:de:0030-drops-196990},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2024.5},
  annote =	{Keywords: Parallelization, multi-core Processors, model-based Development, Code Generation}
}
  • Refine by Author
  • 17 Mertzios, George B.
  • 15 Brandenburg, Björn B.
  • 12 Mitchell, Joseph S. B.
  • 11 Böcker, Sebastian
  • 11 Chatterjee, Krishnendu
  • Show More...

  • Refine by Classification
  • 54 Theory of computation → Design and analysis of algorithms
  • 45 Theory of computation → Formal languages and automata theory
  • 40 Theory of computation → Problems, reductions and completeness
  • 38 Theory of computation → Computational geometry
  • 37 Theory of computation → Automata over infinite objects
  • Show More...

  • Refine by Keyword
  • 18 approximation algorithms
  • 15 Büchi automata
  • 14 complexity
  • 14 parameterized complexity
  • 11 Approximation Algorithms
  • Show More...

  • Refine by Type
  • 1309 document

  • Refine by Publication Year
  • 154 2021
  • 149 2022
  • 145 2019
  • 132 2020
  • 124 2023
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail