76 Search Results for "B�hm, Martin"


Document
The Importance of Parameters in Database Queries

Authors: Martin Grohe, Benny Kimelfeld, Peter Lindner, and Christoph Standke

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
We propose and study a framework for quantifying the importance of the choices of parameter values to the result of a query over a database. These parameters occur as constants in logical queries, such as conjunctive queries. In our framework, the importance of a parameter is its SHAP score. This score is a popular instantiation of the game-theoretic Shapley value to measuring the importance of feature values in machine learning models. We make the case for the rationale of using this score by explaining the intuition behind SHAP, and by showing that we arrive at this score in two different, apparently opposing, approaches to quantifying the contribution of a parameter. The application of the SHAP score requires two components in addition to the query and the database: (a) a probability distribution over the combinations of parameter values, and (b) a utility function that measures the similarity between the result for the original parameters and the result for hypothetical parameters. The main question addressed in the paper is the complexity of calculating the SHAP score for different distributions and similarity measures. We first address the case of probabilistically independent parameters. The problem is hard if we consider a fragment of queries that is hard to evaluate (as one would expect), and even for the fragment of acyclic conjunctive queries. In some cases, though, one can efficiently list all relevant parameter combinations, and then the SHAP score can be computed in polynomial time under reasonable general conditions. Also tractable is the case of full acyclic conjunctive queries for certain (natural) similarity functions. We extend our results to conjunctive queries with inequalities between variables and parameters. Finally, we discuss a simple approximation technique for the case of correlated parameters.

Cite as

Martin Grohe, Benny Kimelfeld, Peter Lindner, and Christoph Standke. The Importance of Parameters in Database Queries. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grohe_et_al:LIPIcs.ICDT.2024.14,
  author =	{Grohe, Martin and Kimelfeld, Benny and Lindner, Peter and Standke, Christoph},
  title =	{{The Importance of Parameters in Database Queries}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.14},
  URN =		{urn:nbn:de:0030-drops-197966},
  doi =		{10.4230/LIPIcs.ICDT.2024.14},
  annote =	{Keywords: SHAP score, query parameters, Shapley value}
}
Document
The Complexity of Homomorphism Reconstructibility

Authors: Jan Böker, Louis Härtel, Nina Runde, Tim Seppelt, and Christoph Standke

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Representing graphs by their homomorphism counts has led to the beautiful theory of homomorphism indistinguishability in recent years. Moreover, homomorphism counts have promising applications in database theory and machine learning, where one would like to answer queries or classify graphs solely based on the representation of a graph G as a finite vector of homomorphism counts from some fixed finite set of graphs to G. We study the computational complexity of the arguably most fundamental computational problem associated to these representations, the homomorphism reconstructability problem: given a finite sequence of graphs and a corresponding vector of natural numbers, decide whether there exists a graph G that realises the given vector as the homomorphism counts from the given graphs. We show that this problem yields a natural example of an NP^#𝖯-hard problem, which still can be NP-hard when restricted to a fixed number of input graphs of bounded treewidth and a fixed input vector of natural numbers, or alternatively, when restricted to a finite input set of graphs. We further show that, when restricted to a finite input set of graphs and given an upper bound on the order of the graph G as additional input, the problem cannot be NP-hard unless 𝖯 = NP. For this regime, we obtain partial positive results. We also investigate the problem’s parameterised complexity and provide fpt-algorithms for the case that a single graph is given and that multiple graphs of the same order with subgraph instead of homomorphism counts are given.

Cite as

Jan Böker, Louis Härtel, Nina Runde, Tim Seppelt, and Christoph Standke. The Complexity of Homomorphism Reconstructibility. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 19:1-19:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{boker_et_al:LIPIcs.STACS.2024.19,
  author =	{B\"{o}ker, Jan and H\"{a}rtel, Louis and Runde, Nina and Seppelt, Tim and Standke, Christoph},
  title =	{{The Complexity of Homomorphism Reconstructibility}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{19:1--19:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.19},
  URN =		{urn:nbn:de:0030-drops-197298},
  doi =		{10.4230/LIPIcs.STACS.2024.19},
  annote =	{Keywords: graph homomorphism, counting complexity, parameterised complexity}
}
Document
Optimal Bicycle Routes with Few Signal Stops

Authors: Ekkehard Köhler, Markus Rogge, Robert Scheffler, and Martin Strehler

Published in: OASIcs, Volume 115, 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)


Abstract
With the increasing popularity of cycling as a mode of transportation, there is a growing need for efficient routing algorithms that consider the specific requirements of cyclists. This paper studies the optimization of bicycle routes while minimizing the number of stops at traffic signals. In particular, we consider three different types of stopping strategies and three types of routes, namely paths, trails, and walks. We present hardness results as well as a pseudo-polynomial algorithm for the problem of computing an optimal route with respect to a pre-defined stop bound.

Cite as

Ekkehard Köhler, Markus Rogge, Robert Scheffler, and Martin Strehler. Optimal Bicycle Routes with Few Signal Stops. In 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023). Open Access Series in Informatics (OASIcs), Volume 115, pp. 1:1-1:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kohler_et_al:OASIcs.ATMOS.2023.1,
  author =	{K\"{o}hler, Ekkehard and Rogge, Markus and Scheffler, Robert and Strehler, Martin},
  title =	{{Optimal Bicycle Routes with Few Signal Stops}},
  booktitle =	{23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)},
  pages =	{1:1--1:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-302-7},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{115},
  editor =	{Frigioni, Daniele and Schiewe, Philine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2023.1},
  URN =		{urn:nbn:de:0030-drops-187628},
  doi =		{10.4230/OASIcs.ATMOS.2023.1},
  annote =	{Keywords: Constrained shortest path, traffic signals, bicycle routes}
}
Document
Funnelselect: Cache-Oblivious Multiple Selection

Authors: Gerth Stølting Brodal and Sebastian Wild

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We present the algorithm funnelselect, the first optimal randomized cache-oblivious algorithm for the multiple-selection problem. The algorithm takes as input an unsorted array of N elements and q query ranks r_1 < ⋯ < r_q, and returns in sorted order the q input elements of rank r_1, …, r_q, respectively. The algorithm uses expected and with high probability O(∑_{i = 1}^{q+1} Δ_i/B ⋅ log_{M/B} N/(Δ_i) + N/B) I/Os, where B is the external memory block size, M ≥ B^{1+ε} is the internal memory size, for some constant ε > 0, and Δ_i = r_i - r_{i-1} (assuming r_0 = 0 and r_{q+1} = N + 1). This is the best possible I/O bound in the cache-oblivious and external memory models. The result is achieved by reversing the computation of the cache-oblivious sorting algorithm funnelsort by Frigo, Leiserson, Prokop and Ramachandran [FOCS 1999], using randomly selected pivots for distributing elements, and pruning computations that with high probability are not expected to contain any query ranks.

Cite as

Gerth Stølting Brodal and Sebastian Wild. Funnelselect: Cache-Oblivious Multiple Selection. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{brodal_et_al:LIPIcs.ESA.2023.25,
  author =	{Brodal, Gerth St{\o}lting and Wild, Sebastian},
  title =	{{Funnelselect: Cache-Oblivious Multiple Selection}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.25},
  URN =		{urn:nbn:de:0030-drops-186789},
  doi =		{10.4230/LIPIcs.ESA.2023.25},
  annote =	{Keywords: Multiple selection, cache-oblivious algorithm, randomized algorithm, entropy bounds}
}
Document
Primal-Dual Schemes for Online Matching in Bounded Degree Graphs

Authors: Ilan Reuven Cohen and Binghui Peng

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We explore various generalizations of the online matching problem in a bipartite graph G as the b-matching problem [Kalyanasundaram and Pruhs, 2000], the allocation problem [Buchbinder et al., 2007], and the AdWords problem [Mehta et al., 2007] in a beyond-worst-case setting. Specifically, we assume that G is a (k, d)-bounded degree graph, introduced by Naor and Wajc [Naor and Wajc, 2018]. Such graphs model natural properties on the degrees of advertisers and queries in the allocation and AdWords problems. While previous work only considers the scenario where k ≥ d, we consider the interesting intermediate regime of k ≤ d and prove a tight competitive ratio as a function of k,d (under the small-bid assumption) of τ(k,d) = 1 - (1-k/d)⋅(1-1/d)^{d - k} for the b-matching and allocation problems. We exploit primal-dual schemes [Buchbinder et al., 2009; Azar et al., 2017] to design and analyze the corresponding tight upper and lower bounds. Finally, we show a separation between the allocation and AdWords problems. We demonstrate that τ(k,d) competitiveness is impossible for the AdWords problem even in (k,d)-bounded degree graphs.

Cite as

Ilan Reuven Cohen and Binghui Peng. Primal-Dual Schemes for Online Matching in Bounded Degree Graphs. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 35:1-35:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.ESA.2023.35,
  author =	{Cohen, Ilan Reuven and Peng, Binghui},
  title =	{{Primal-Dual Schemes for Online Matching in Bounded Degree Graphs}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{35:1--35:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.35},
  URN =		{urn:nbn:de:0030-drops-186884},
  doi =		{10.4230/LIPIcs.ESA.2023.35},
  annote =	{Keywords: Online Matching, Primal-dual analysis, bounded-degree graph, the AdWords problem}
}
Document
Efficient Parallel Output-Sensitive Edit Distance

Authors: Xiangyun Ding, Xiaojun Dong, Yan Gu, Youzhe Liu, and Yihan Sun

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
In this paper, we study efficient parallel edit distance algorithms, both in theory and in practice. Given two strings A[1..n] and B[1..m], and a set of operations allowed to edit the strings, the edit distance between A and B is the minimum number of operations required to transform A into B. In this paper, we use edit distance to refer to the Levenshtein distance, which allows for unit-cost single-character edits (insertions, deletions, substitutions). Sequentially, a standard Dynamic Programming (DP) algorithm solves edit distance with Θ(nm) cost. In many real-world applications, the strings to be compared are similar to each other and have small edit distances. To achieve highly practical implementations, we focus on output-sensitive parallel edit-distance algorithms, i.e., to achieve asymptotically better cost bounds than the standard Θ(nm) algorithm when the edit distance is small. We study four algorithms in the paper, including three algorithms based on Breadth-First Search (BFS), and one algorithm based on Divide-and-Conquer (DaC). Our BFS-based solution is based on the Landau-Vishkin algorithm. We implement three different data structures for the longest common prefix (LCP) queries needed in the algorithm: the classic solution using parallel suffix array, and two hash-based solutions proposed in this paper. Our DaC-based solution is inspired by the output-insensitive solution proposed by Apostolico et al., and we propose a non-trivial adaption to make it output-sensitive. All of the algorithms studied in this paper have good theoretical guarantees, and they achieve different tradeoffs between work (total number of operations), span (longest dependence chain in the computation), and space. We test and compare our algorithms on both synthetic data and real-world data, including DNA sequences, Wikipedia texts, GitHub repositories, etc. Our BFS-based algorithms outperform the existing parallel edit-distance implementation in ParlayLib in all test cases. On cases with fewer than 10⁵ edits, our algorithm can process input sequences of size 10⁹ in about ten seconds, while ParlayLib can only process sequences of sizes up to 10⁶ in the same amount of time. By comparing our algorithms, we also provide a better understanding of the choice of algorithms for different input patterns. We believe that our paper is the first systematic study in the theory and practice of parallel edit distance.

Cite as

Xiangyun Ding, Xiaojun Dong, Yan Gu, Youzhe Liu, and Yihan Sun. Efficient Parallel Output-Sensitive Edit Distance. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 40:1-40:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ding_et_al:LIPIcs.ESA.2023.40,
  author =	{Ding, Xiangyun and Dong, Xiaojun and Gu, Yan and Liu, Youzhe and Sun, Yihan},
  title =	{{Efficient Parallel Output-Sensitive Edit Distance}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{40:1--40:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.40},
  URN =		{urn:nbn:de:0030-drops-186935},
  doi =		{10.4230/LIPIcs.ESA.2023.40},
  annote =	{Keywords: Edit Distance, Parallel Algorithms, String Algorithms, Dynamic Programming, Pattern Matching}
}
Document
Optimal Energetic Paths for Electric Cars

Authors: Dani Dorfman, Haim Kaplan, Robert E. Tarjan, and Uri Zwick

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
A weighted directed graph G = (V,A,c), where A ⊆ V× V and c:A → ℝ, naturally describes a road network in which an electric car, or vehicle (EV), can roam. An arc uv ∈ A models a road segment connecting the two vertices (junctions) u and v. The cost c(uv) of the arc uv is the amount of energy the car needs to travel from u to v. This amount can be positive, zero or negative. We consider both the more realistic scenario where there are no negative cycles in the graph, as well as the more challenging scenario, which can also be motivated, where negative cycles may be present. The electric car has a battery that can store up to B units of energy. The car can traverse an arc uv ∈ A only if it is at u and the charge b in its battery satisfies b ≥ c(uv). If the car traverses the arc uv then it reaches v with a charge of min{b-c(uv),B} in its battery. Arcs with a positive cost deplete the battery while arcs with negative costs may charge the battery, but not above its capacity of B. If the car is at a vertex u and cannot traverse any outgoing arcs of u, then it is stuck and cannot continue traveling. We consider the following natural problem: Given two vertices s,t ∈ V, can the car travel from s to t, starting at s with an initial charge b, where 0 ≤ b ≤ B? If so, what is the maximum charge with which the car can reach t? Equivalently, what is the smallest depletion δ_{B,b}(s,t) such that the car can reach t with a charge of b-δ_{B,b}(s,t) in its battery, and which path should the car follow to achieve this? We also refer to δ_{B,b}(s,t) as the energetic cost of traveling from s to t. We let δ_{B,b}(s,t) = ∞ if the car cannot travel from s to t starting with an initial charge of b. The problem of computing energetic costs is a strict generalization of the standard shortest paths problem. When there are no negative cycles, the single-source version of the problem can be solved using simple adaptations of the classical Bellman-Ford and Dijkstra algorithms. More involved algorithms are required when the graph may contain negative cycles.

Cite as

Dani Dorfman, Haim Kaplan, Robert E. Tarjan, and Uri Zwick. Optimal Energetic Paths for Electric Cars. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 42:1-42:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dorfman_et_al:LIPIcs.ESA.2023.42,
  author =	{Dorfman, Dani and Kaplan, Haim and Tarjan, Robert E. and Zwick, Uri},
  title =	{{Optimal Energetic Paths for Electric Cars}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{42:1--42:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.42},
  URN =		{urn:nbn:de:0030-drops-186955},
  doi =		{10.4230/LIPIcs.ESA.2023.42},
  annote =	{Keywords: Electric cars, Optimal Paths, Battery depletion}
}
Document
Pareto Sums of Pareto Sets

Authors: Demian Hespe, Peter Sanders, Sabine Storandt, and Carina Truschel

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
In bi-criteria optimization problems, the goal is typically to compute the set of Pareto-optimal solutions. Many algorithms for these types of problems rely on efficient merging or combining of partial solutions and filtering of dominated solutions in the resulting sets. In this paper, we consider the task of computing the Pareto sum of two given Pareto sets A, B of size n. The Pareto sum contains all non-dominated points of the Minkowski sum M = {a+b|a ∈ A, b ∈ B}. Since the Minkowski sum has a size of n², but the Pareto sum C can be much smaller, the goal is to compute C without having to compute and store all of M. We present several new algorithms for efficient Pareto sum computation, including an output-sensitive one with a running time of 𝒪(n log n + nk) and a space consumption of 𝒪(n+k) for k = |C|. We also describe suitable engineering techniques to improve the practical running times of our algorithms and provide a comparative experimental study. As one showcase application, we consider preprocessing-based methods for bi-criteria route planning in road networks. Pareto sum computation is a frequent task in the preprocessing phase. We show that using our algorithms with an output-sensitive space consumption allows to tackle larger instances and reduces the preprocessing time compared to algorithms that fully store M.

Cite as

Demian Hespe, Peter Sanders, Sabine Storandt, and Carina Truschel. Pareto Sums of Pareto Sets. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 60:1-60:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hespe_et_al:LIPIcs.ESA.2023.60,
  author =	{Hespe, Demian and Sanders, Peter and Storandt, Sabine and Truschel, Carina},
  title =	{{Pareto Sums of Pareto Sets}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{60:1--60:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.60},
  URN =		{urn:nbn:de:0030-drops-187132},
  doi =		{10.4230/LIPIcs.ESA.2023.60},
  annote =	{Keywords: Minkowski sum, Skyline, Successive Algorithm}
}
Document
Parameterized Complexity of Fair Bisection: (FPT-Approximation meets Unbreakability)

Authors: Tanmay Inamdar, Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
In the Minimum Bisection problem input is a graph G and the goal is to partition the vertex set into two parts A and B, such that ||A|-|B|| ≤ 1 and the number k of edges between A and B is minimized. The problem is known to be NP-hard, and assuming the Unique Games Conjecture even NP-hard to approximate within a constant factor [Khot and Vishnoi, J.ACM'15]. On the other hand, a 𝒪(log n)-approximation algorithm [Räcke, STOC'08] and a parameterized algorithm [Cygan et al., ACM Transactions on Algorithms'20] running in time k^𝒪(k) n^𝒪(1) is known. The Minimum Bisection problem can be viewed as a clustering problem where edges represent similarity and the task is to partition the vertices into two equally sized clusters while minimizing the number of pairs of similar objects that end up in different clusters. Motivated by a number of egregious examples of unfair bias in AI systems, many fundamental clustering problems have been revisited and re-formulated to incorporate fairness constraints. In this paper we initiate the study of the Minimum Bisection problem with fairness constraints. Here the input is a graph G, positive integers c and k, a function χ:V(G) → {1, …, c} that assigns a color χ(v) to each vertex v in G, and c integers r_1,r_2,⋯,r_c. The goal is to partition the vertex set of G into two almost-equal sized parts A and B with at most k edges between them, such that for each color i ∈ {1, …, c}, A has exactly r_i vertices of color i. Each color class corresponds to a group which we require the partition (A, B) to treat fairly, and the constraints that A has exactly r_i vertices of color i can be used to encode that no group is over- or under-represented in either of the two clusters. We first show that introducing fairness constraints appears to make the Minimum Bisection problem qualitatively harder. Specifically we show that unless FPT=W[1] the problem admits no f(c)n^𝒪(1) time algorithm even when k = 0. On the other hand, our main technical contribution shows that is that this hardness result is simply a consequence of the very strict requirement that each color class i has exactly r_i vertices in A. In particular we give an f(k,c,ε)n^𝒪(1) time algorithm that finds a balanced partition (A, B) with at most k edges between them, such that for each color i ∈ [c], there are at most (1±ε)r_i vertices of color i in A. Our approximation algorithm is best viewed as a proof of concept that the technique introduced by [Lampis, ICALP'18] for obtaining FPT-approximation algorithms for problems of bounded tree-width or clique-width can be efficiently exploited even on graphs of unbounded width. The key insight is that the technique of Lampis is applicable on tree decompositions with unbreakable bags (as introduced in [Cygan et al., SIAM Journal on Computing'14]). An important ingredient of our approximation scheme is a combinatorial result that may be of independent interest, namely that for every k, every graph G admits a tree decomposition with adhesions of size at most 𝒪(k), unbreakable bags, and logarithmic depth.

Cite as

Tanmay Inamdar, Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. Parameterized Complexity of Fair Bisection: (FPT-Approximation meets Unbreakability). In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 63:1-63:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{inamdar_et_al:LIPIcs.ESA.2023.63,
  author =	{Inamdar, Tanmay and Lokshtanov, Daniel and Saurabh, Saket and Surianarayanan, Vaishali},
  title =	{{Parameterized Complexity of Fair Bisection: (FPT-Approximation meets Unbreakability)}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{63:1--63:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.63},
  URN =		{urn:nbn:de:0030-drops-187167},
  doi =		{10.4230/LIPIcs.ESA.2023.63},
  annote =	{Keywords: FPT Approximation, Minimum Bisection, Unbreakable Tree Decomposition, Treewidth}
}
Document
Bellman-Ford Is Optimal for Shortest Hop-Bounded Paths

Authors: Tomasz Kociumaka and Adam Polak

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
This paper is about the problem of finding a shortest s-t path using at most h edges in edge-weighted graphs. The Bellman-Ford algorithm solves this problem in O(hm) time, where m is the number of edges. We show that this running time is optimal, up to subpolynomial factors, under popular fine-grained complexity assumptions. More specifically, we show that under the APSP Hypothesis the problem cannot be solved faster already in undirected graphs with nonnegative edge weights. This lower bound holds even restricted to graphs of arbitrary density and for arbitrary h ∈ O(√m). Moreover, under a stronger assumption, namely the Min-Plus Convolution Hypothesis, we can eliminate the restriction h ∈ O(√m). In other words, the O(hm) bound is tight for the entire space of parameters h, m, and n, where n is the number of nodes. Our lower bounds can be contrasted with the recent near-linear time algorithm for the negative-weight Single-Source Shortest Paths problem, which is the textbook application of the Bellman-Ford algorithm.

Cite as

Tomasz Kociumaka and Adam Polak. Bellman-Ford Is Optimal for Shortest Hop-Bounded Paths. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 72:1-72:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kociumaka_et_al:LIPIcs.ESA.2023.72,
  author =	{Kociumaka, Tomasz and Polak, Adam},
  title =	{{Bellman-Ford Is Optimal for Shortest Hop-Bounded Paths}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{72:1--72:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.72},
  URN =		{urn:nbn:de:0030-drops-187257},
  doi =		{10.4230/LIPIcs.ESA.2023.72},
  annote =	{Keywords: Fine-grained complexity, graph algorithms, lower bounds, shortest paths}
}
Document
Effective Continued Fraction Dimension Versus Effective Hausdorff Dimension of Reals

Authors: Satyadev Nandakumar, Akhil S, and Prateek Vishnoi

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We establish that constructive continued fraction dimension originally defined using s-gales [Nandakumar and Vishnoi, 2022] is robust, but surprisingly, that the effective continued fraction dimension and effective (base-b) Hausdorff dimension of the same real can be unequal in general. We initially provide an equivalent characterization of continued fraction dimension using Kolmogorov complexity. In the process, we construct an optimal lower semi-computable s-gale for continued fractions. We also prove new bounds on the Lebesgue measure of continued fraction cylinders, which may be of independent interest. We apply these bounds to reveal an unexpected behavior of continued fraction dimension. It is known that feasible dimension is invariant with respect to base conversion [Hitchcock and Mayordomo, 2013]. We also know that Martin-Löf randomness and computable randomness are invariant not only with respect to base conversion, but also with respect to the continued fraction representation [Nandakumar and Vishnoi, 2022]. In contrast, for any 0 < ε < 0.5, we prove the existence of a real whose effective Hausdorff dimension is less than ε, but whose effective continued fraction dimension is greater than or equal to 0.5. This phenomenon is related to the "non-faithfulness" of certain families of covers, investigated by Peres and Torbin [Peres and Torbin] and by Albeverio, Ivanenko, Lebid and Torbin [Albeverio et al., 2020]. We also establish that for any real, the constructive Hausdorff dimension is at most its effective continued fraction dimension.

Cite as

Satyadev Nandakumar, Akhil S, and Prateek Vishnoi. Effective Continued Fraction Dimension Versus Effective Hausdorff Dimension of Reals. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 70:1-70:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{nandakumar_et_al:LIPIcs.MFCS.2023.70,
  author =	{Nandakumar, Satyadev and S, Akhil and Vishnoi, Prateek},
  title =	{{Effective Continued Fraction Dimension Versus Effective Hausdorff Dimension of Reals}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{70:1--70:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.70},
  URN =		{urn:nbn:de:0030-drops-186041},
  doi =		{10.4230/LIPIcs.MFCS.2023.70},
  annote =	{Keywords: Algorithmic information theory, Kolmogorov complexity, Continued fractions, Effective Hausdorff dimension}
}
Document
APPROX
Online Facility Location with Linear Delay

Authors: Marcin Bienkowski, Martin Böhm, Jarosław Byrka, and Jan Marcinkowski

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
In the problem of online facility location with delay, a sequence of n clients appear in the metric space, and they need to be eventually connected to some open facility. The clients do not have to be connected immediately, but such a choice comes with a certain penalty: each client incurs a waiting cost (equal to the difference between its arrival and its connection time). At any point in time, an algorithm may decide to open a facility and connect any subset of clients to it. That is, an algorithm needs to balance three types of costs: cost of opening facilities, costs of connecting clients, and the waiting costs of clients. We study a natural variant of this problem, where clients may be connected also to an already open facility, but such action incurs an extra cost: an algorithm pays for waiting of the facility (a cost incurred separately for each such "late" connection). This is reminiscent of online matching with delays, where both sides of the connection incur a waiting cost. We call this variant two-sided delay to differentiate it from the previously studied one-sided delay, where clients may connect to a facility only at its opening time. We present an O(1)-competitive deterministic algorithm for the two-sided delay variant. Our approach is an extension of the approach used by Jain, Mahdian and Saberi [STOC 2002] for analyzing the performance of offline algorithms for facility location. To this end, we substantially simplify the part of the original argument in which a bound on the sequence of factor-revealing LPs is derived. We then show how to transform our O(1)-competitive algorithm for the two-sided delay variant to O(log n / log log n)-competitive deterministic algorithm for one-sided delays. This improves the known O(log n) bound by Azar and Touitou [FOCS 2020]. We note that all previous online algorithms for problems with delays in general metrics have at least logarithmic ratios.

Cite as

Marcin Bienkowski, Martin Böhm, Jarosław Byrka, and Jan Marcinkowski. Online Facility Location with Linear Delay. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 45:1-45:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bienkowski_et_al:LIPIcs.APPROX/RANDOM.2022.45,
  author =	{Bienkowski, Marcin and B\"{o}hm, Martin and Byrka, Jaros{\l}aw and Marcinkowski, Jan},
  title =	{{Online Facility Location with Linear Delay}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{45:1--45:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.45},
  URN =		{urn:nbn:de:0030-drops-171678},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.45},
  annote =	{Keywords: online facility location, network design problems, facility location with delay, JMS algorithm, competitive analysis, factor revealing LP}
}
Document
Mobility Data Science (Dagstuhl Seminar 22021)

Authors: Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, Walid Aref, Gennady Andrienko, Natalia Andrienko, Yang Cao, Sanjay Chawla, Reynold Cheng, Panos Chrysanthis, Xiqi Fei, Gabriel Ghinita, Anita Graser, Dimitrios Gunopulos, Christian Jensen, Joon-Sook Kim, Kyoung-Sook Kim, Peer Kröger, John Krumm, Johannes Lauer, Amr Magdy, Mario Nascimento, Siva Ravada, Matthias Renz, Dimitris Sacharidis, Cyrus Shahabi, Flora Salim, Mohamed Sarwat, Maxime Schoemans, Bettina Speckmann, Egemen Tanin, Yannis Theodoridis, Kristian Torp, Goce Trajcevski, Marc van Kreveld, Carola Wenk, Martin Werner, Raymond Wong, Song Wu, Jianqiu Xu, Moustafa Youssef, Demetris Zeinalipour, Mengxuan Zhang, and Esteban Zimányi

Published in: Dagstuhl Reports, Volume 12, Issue 1 (2022)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22021 "Mobility Data Science". This seminar was held January 9-14, 2022, including 47 participants from industry and academia. The goal of this Dagstuhl Seminar was to create a new research community of mobility data science in which the whole is greater than the sum of its parts by bringing together established leaders as well as promising young researchers from all fields related to mobility data science. Specifically, this report summarizes the main results of the seminar by (1) defining Mobility Data Science as a research domain, (2) by sketching its agenda in the coming years, and by (3) building a mobility data science community. (1) Mobility data science is defined as spatiotemporal data that additionally captures the behavior of moving entities (human, vehicle, animal, etc.). To understand, explain, and predict behavior, we note that a strong collaboration with research in behavioral and social sciences is needed. (2) Future research directions for mobility data science described in this report include a) mobility data acquisition and privacy, b) mobility data management and analysis, and c) applications of mobility data science. (3) We identify opportunities towards building a mobility data science community, towards collaborations between academic and industry, and towards a mobility data science curriculum.

Cite as

Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, Walid Aref, Gennady Andrienko, Natalia Andrienko, Yang Cao, Sanjay Chawla, Reynold Cheng, Panos Chrysanthis, Xiqi Fei, Gabriel Ghinita, Anita Graser, Dimitrios Gunopulos, Christian Jensen, Joon-Sook Kim, Kyoung-Sook Kim, Peer Kröger, John Krumm, Johannes Lauer, Amr Magdy, Mario Nascimento, Siva Ravada, Matthias Renz, Dimitris Sacharidis, Cyrus Shahabi, Flora Salim, Mohamed Sarwat, Maxime Schoemans, Bettina Speckmann, Egemen Tanin, Yannis Theodoridis, Kristian Torp, Goce Trajcevski, Marc van Kreveld, Carola Wenk, Martin Werner, Raymond Wong, Song Wu, Jianqiu Xu, Moustafa Youssef, Demetris Zeinalipour, Mengxuan Zhang, and Esteban Zimányi. Mobility Data Science (Dagstuhl Seminar 22021). In Dagstuhl Reports, Volume 12, Issue 1, pp. 1-34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{mokbel_et_al:DagRep.12.1.1,
  author =	{Mokbel, Mohamed and Sakr, Mahmoud and Xiong, Li and Z\"{u}fle, Andreas and Almeida, Jussara and Anderson, Taylor and Aref, Walid and Andrienko, Gennady and Andrienko, Natalia and Cao, Yang and Chawla, Sanjay and Cheng, Reynold and Chrysanthis, Panos and Fei, Xiqi and Ghinita, Gabriel and Graser, Anita and Gunopulos, Dimitrios and Jensen, Christian and Kim, Joon-Sook and Kim, Kyoung-Sook and Kr\"{o}ger, Peer and Krumm, John and Lauer, Johannes and Magdy, Amr and Nascimento, Mario and Ravada, Siva and Renz, Matthias and Sacharidis, Dimitris and Shahabi, Cyrus and Salim, Flora and Sarwat, Mohamed and Schoemans, Maxime and Speckmann, Bettina and Tanin, Egemen and Theodoridis, Yannis and Torp, Kristian and Trajcevski, Goce and van Kreveld, Marc and Wenk, Carola and Werner, Martin and Wong, Raymond and Wu, Song and Xu, Jianqiu and Youssef, Moustafa and Zeinalipour, Demetris and Zhang, Mengxuan and Zim\'{a}nyi, Esteban},
  title =	{{Mobility Data Science (Dagstuhl Seminar 22021)}},
  pages =	{1--34},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2022},
  volume =	{12},
  number =	{1},
  editor =	{Mokbel, Mohamed and Sakr, Mahmoud and Xiong, Li and Z\"{u}fle, Andreas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.12.1.1},
  URN =		{urn:nbn:de:0030-drops-169190},
  doi =		{10.4230/DagRep.12.1.1},
  annote =	{Keywords: Spatio-temporal, Tracking, Privacy, Behavior, Data cleaning, Data management, Analytics}
}
Document
Universally Composable Almost-Everywhere Secure Computation

Authors: Nishanth Chandran, Pouyan Forghani, Juan Garay, Rafail Ostrovsky, Rutvik Patel, and Vassilis Zikas

Published in: LIPIcs, Volume 230, 3rd Conference on Information-Theoretic Cryptography (ITC 2022)


Abstract
Most existing work on secure multi-party computation (MPC) ignores a key idiosyncrasy of modern communication networks, that there are a limited number of communication paths between any two nodes, many of which might even be corrupted. The problem becomes particularly acute in the information-theoretic setting, where the lack of trusted setups (and the cryptographic primitives they enable) makes communication over sparse networks more challenging. The work by Garay and Ostrovsky [EUROCRYPT'08] on almost-everywhere MPC (AE-MPC), introduced "best-possible security" properties for MPC over such incomplete networks, where necessarily some of the honest parties may be excluded from the computation. In this work, we provide a universally composable definition of almost-everywhere security, which allows us to automatically and accurately capture the guarantees of AE-MPC (as well as AE-communication, the analogous "best-possible security" version of secure communication) in the Universal Composability (UC) framework of Canetti. Our results offer the first simulation-based treatment of this important but under-investigated problem, along with the first simulation-based proof of AE-MPC. To achieve that goal, we state and prove a general composition theorem, which makes precise the level or "quality" of AE-security that is obtained when a protocol’s hybrids are replaced with almost-everywhere components.

Cite as

Nishanth Chandran, Pouyan Forghani, Juan Garay, Rafail Ostrovsky, Rutvik Patel, and Vassilis Zikas. Universally Composable Almost-Everywhere Secure Computation. In 3rd Conference on Information-Theoretic Cryptography (ITC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 230, pp. 14:1-14:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chandran_et_al:LIPIcs.ITC.2022.14,
  author =	{Chandran, Nishanth and Forghani, Pouyan and Garay, Juan and Ostrovsky, Rafail and Patel, Rutvik and Zikas, Vassilis},
  title =	{{Universally Composable Almost-Everywhere Secure Computation}},
  booktitle =	{3rd Conference on Information-Theoretic Cryptography (ITC 2022)},
  pages =	{14:1--14:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-238-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{230},
  editor =	{Dachman-Soled, Dana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2022.14},
  URN =		{urn:nbn:de:0030-drops-164929},
  doi =		{10.4230/LIPIcs.ITC.2022.14},
  annote =	{Keywords: Secure multi-party computation, universal composability, almost-everywhere secure computation, sparse graphs, secure message transmission}
}
Document
Artifact
A Deterministic Memory Allocator for Dynamic Symbolic Execution (Artifact)

Authors: Daniel Schemmel, Julian Büning, Frank Busse, Martin Nowack, and Cristian Cadar

Published in: DARTS, Volume 8, Issue 2, Special Issue of the 36th European Conference on Object-Oriented Programming (ECOOP 2022)


Abstract
KDAlloc is a deterministic memory allocator for Dynamic Symbolic Execution. This artifact provides the allocator itself, integrated into the KLEE symbolic execution engine and the evaluation thereof.

Cite as

Daniel Schemmel, Julian Büning, Frank Busse, Martin Nowack, and Cristian Cadar. A Deterministic Memory Allocator for Dynamic Symbolic Execution (Artifact). In Special Issue of the 36th European Conference on Object-Oriented Programming (ECOOP 2022). Dagstuhl Artifacts Series (DARTS), Volume 8, Issue 2, pp. 13:1-13:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{schemmel_et_al:DARTS.8.2.13,
  author =	{Schemmel, Daniel and B\"{u}ning, Julian and Busse, Frank and Nowack, Martin and Cadar, Cristian},
  title =	{{A Deterministic Memory Allocator for Dynamic Symbolic Execution (Artifact)}},
  pages =	{13:1--13:2},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2022},
  volume =	{8},
  number =	{2},
  editor =	{Schemmel, Daniel and B\"{u}ning, Julian and Busse, Frank and Nowack, Martin and Cadar, Cristian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DARTS.8.2.13},
  URN =		{urn:nbn:de:0030-drops-162110},
  doi =		{10.4230/DARTS.8.2.13},
  annote =	{Keywords: memory allocation, dynamic symbolic execution}
}
  • Refine by Author
  • 5 Grohe, Martin
  • 4 Böhm, Martin
  • 4 Kovar, Martin
  • 3 Ostrovsky, Rafail
  • 2 Bienkowski, Marcin
  • Show More...

  • Refine by Classification
  • 4 Mathematics of computing → Graph theory
  • 4 Theory of computation → Design and analysis of algorithms
  • 4 Theory of computation → Graph algorithms analysis
  • 3 Mathematics of computing → Graph algorithms
  • 3 Theory of computation → Parameterized complexity and exact algorithms
  • Show More...

  • Refine by Keyword
  • 3 planar graphs
  • 2 Continued fractions
  • 2 Kolmogorov complexity
  • 2 Weisfeiler-Leman algorithm
  • 2 competitive analysis
  • Show More...

  • Refine by Type
  • 76 document

  • Refine by Publication Year
  • 10 2020
  • 9 2023
  • 7 2019
  • 7 2022
  • 6 2005
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail