3 Search Results for "Basset, Nicolas"


Document
Beyond Admissibility: Dominance Between Chains of Strategies

Authors: Nicolas Basset, Ismaël Jecker, Arno Pauly, Jean-François Raskin, and Marie Van den Bogaard

Published in: LIPIcs, Volume 119, 27th EACSL Annual Conference on Computer Science Logic (CSL 2018)


Abstract
Admissible strategies, i.e. those that are not dominated by any other strategy, are a typical rationality notion in game theory. In many classes of games this is justified by results showing that any strategy is admissible or dominated by an admissible strategy. However, in games played on finite graphs with quantitative objectives (as used for reactive synthesis), this is not the case. We consider increasing chains of strategies instead to recover a satisfactory rationality notion based on dominance in such games. We start with some order-theoretic considerations establishing sufficient criteria for this to work. We then turn our attention to generalised safety/reachability games as a particular application. We propose the notion of maximal uniform chain as the desired dominance-based rationality concept in these games. Decidability of some fundamental questions about uniform chains is established.

Cite as

Nicolas Basset, Ismaël Jecker, Arno Pauly, Jean-François Raskin, and Marie Van den Bogaard. Beyond Admissibility: Dominance Between Chains of Strategies. In 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 119, pp. 10:1-10:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{basset_et_al:LIPIcs.CSL.2018.10,
  author =	{Basset, Nicolas and Jecker, Isma\"{e}l and Pauly, Arno and Raskin, Jean-Fran\c{c}ois and Van den Bogaard, Marie},
  title =	{{Beyond Admissibility: Dominance Between Chains of Strategies}},
  booktitle =	{27th EACSL Annual Conference on Computer Science Logic (CSL 2018)},
  pages =	{10:1--10:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-088-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{119},
  editor =	{Ghica, Dan R. and Jung, Achim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2018.10},
  URN =		{urn:nbn:de:0030-drops-96774},
  doi =		{10.4230/LIPIcs.CSL.2018.10},
  annote =	{Keywords: dominated strategies, admissible strategies, games played on finite graphs, reactive synthesis, reachability games, safety games, cofinal, order theory}
}
Document
Uniform Sampling for Networks of Automata

Authors: Nicolas Basset, Jean Mairesse, and Michèle Soria

Published in: LIPIcs, Volume 85, 28th International Conference on Concurrency Theory (CONCUR 2017)


Abstract
We call network of automata a family of partially synchronised automata, i.e. a family of deterministic automata which are synchronised via shared letters, and evolve independently otherwise. We address the problem of uniform random sampling of words recognised by a network of automata. To that purpose, we define the reduced automaton of the model, which involves only the product of the synchronised part of the component automata. We provide uniform sampling algorithms which are polynomial with respect to the size of the reduced automaton, greatly improving on the best known algorithms. Our sampling algorithms rely on combinatorial and probabilistic methods and are of three different types: exact, Boltzmann and Parry sampling.

Cite as

Nicolas Basset, Jean Mairesse, and Michèle Soria. Uniform Sampling for Networks of Automata. In 28th International Conference on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 85, pp. 36:1-36:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{basset_et_al:LIPIcs.CONCUR.2017.36,
  author =	{Basset, Nicolas and Mairesse, Jean and Soria, Mich\`{e}le},
  title =	{{Uniform Sampling for Networks of Automata}},
  booktitle =	{28th International Conference on Concurrency Theory (CONCUR 2017)},
  pages =	{36:1--36:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-048-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{85},
  editor =	{Meyer, Roland and Nestmann, Uwe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2017.36},
  URN =		{urn:nbn:de:0030-drops-77977},
  doi =		{10.4230/LIPIcs.CONCUR.2017.36},
  annote =	{Keywords: Partially synchronised automata, uniform sampling; recursive method, Boltzmann sampling, Parry measure}
}
Document
Admissiblity in Concurrent Games

Authors: Nicolas Basset, Gilles Geeraerts, Jean-François Raskin, and Ocan Sankur

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
In this paper, we study the notion of admissibility for randomised strategies in concurrent games. Intuitively, an admissible strategy is one where the player plays 'as well as possible', because there is no other strategy that dominates it, i.e., that wins (almost surely) against a superset of adversarial strategies. We prove that admissible strategies always exist in concurrent games, and we characterise them precisely. Then, when the objectives of the players are omega-regular, we show how to perform assume-admissible synthesis, i.e., how to compute admissible strategies that win (almost surely) under the hypothesis that the other players play admissible strategies only.

Cite as

Nicolas Basset, Gilles Geeraerts, Jean-François Raskin, and Ocan Sankur. Admissiblity in Concurrent Games. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 123:1-123:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{basset_et_al:LIPIcs.ICALP.2017.123,
  author =	{Basset, Nicolas and Geeraerts, Gilles and Raskin, Jean-Fran\c{c}ois and Sankur, Ocan},
  title =	{{Admissiblity in Concurrent Games}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{123:1--123:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.123},
  URN =		{urn:nbn:de:0030-drops-74765},
  doi =		{10.4230/LIPIcs.ICALP.2017.123},
  annote =	{Keywords: Multi-player games, admissibility, concurrent games, randomized strategies}
}
  • Refine by Author
  • 3 Basset, Nicolas
  • 2 Raskin, Jean-François
  • 1 Geeraerts, Gilles
  • 1 Jecker, Ismaël
  • 1 Mairesse, Jean
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Automata extensions
  • 1 Theory of computation → Solution concepts in game theory

  • Refine by Keyword
  • 1 Boltzmann sampling
  • 1 Multi-player games
  • 1 Parry measure
  • 1 Partially synchronised automata
  • 1 admissibility
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2017
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail