3 Search Results for "Chen, Zhi-Zhong"


Document
Short Paper
Digital Injustice: A Case Study of Land Use Classification Using Multisource Data in Nairobi, Kenya (Short Paper)

Authors: Wenlan Zhang, Chen Zhong, and Faith Taylor

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
The utilisation of big data has emerged as a critical instrument for land use classification and decision-making processes due to its high spatiotemporal accuracy and ability to diminish manual data collection. However, the reliability and feasibility of big data are still controversial, the most important of which is whether it can represent the whole population with justice. The present study incorporates multiple data sources to facilitate land use classification while proving the existence of data bias caused digital injustice. Using Nairobi, Kenya, as a case study and employing a random forest classifier as a benchmark, this research combines satellite imagery, night-time light images, building footprint, Twitter posts, and street view images. The findings of the land use classification also disclose the presence of data bias resulting from the inadequate coverage of social media and street view data, potentially contributing to injustice in big data-informed decision-making. Strategies to mitigate such digital injustice situations are briefly discussed here, and more in-depth exploration remains for future work.

Cite as

Wenlan Zhang, Chen Zhong, and Faith Taylor. Digital Injustice: A Case Study of Land Use Classification Using Multisource Data in Nairobi, Kenya (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 94:1-94:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.GIScience.2023.94,
  author =	{Zhang, Wenlan and Zhong, Chen and Taylor, Faith},
  title =	{{Digital Injustice: A Case Study of Land Use Classification Using Multisource Data in Nairobi, Kenya}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{94:1--94:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.94},
  URN =		{urn:nbn:de:0030-drops-189899},
  doi =		{10.4230/LIPIcs.GIScience.2023.94},
  annote =	{Keywords: Data bias, Digital injustice, Multi-source sensor data, Land use classification, Random forest classifier}
}
Document
1 X 1 Rush Hour with Fixed Blocks Is PSPACE-Complete

Authors: Josh Brunner, Lily Chung, Erik D. Demaine, Dylan Hendrickson, Adam Hesterberg, Adam Suhl, and Avi Zeff

Published in: LIPIcs, Volume 157, 10th International Conference on Fun with Algorithms (FUN 2021) (2020)


Abstract
Consider n²-1 unit-square blocks in an n × n square board, where each block is labeled as movable horizontally (only), movable vertically (only), or immovable - a variation of Rush Hour with only 1 × 1 cars and fixed blocks. We prove that it is PSPACE-complete to decide whether a given block can reach the left edge of the board, by reduction from Nondeterministic Constraint Logic via 2-color oriented Subway Shuffle. By contrast, polynomial-time algorithms are known for deciding whether a given block can be moved by one space, or when each block either is immovable or can move both horizontally and vertically. Our result answers a 15-year-old open problem by Tromp and Cilibrasi, and strengthens previous PSPACE-completeness results for Rush Hour with vertical 1 × 2 and horizontal 2 × 1 movable blocks and 4-color Subway Shuffle.

Cite as

Josh Brunner, Lily Chung, Erik D. Demaine, Dylan Hendrickson, Adam Hesterberg, Adam Suhl, and Avi Zeff. 1 X 1 Rush Hour with Fixed Blocks Is PSPACE-Complete. In 10th International Conference on Fun with Algorithms (FUN 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 157, pp. 7:1-7:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{brunner_et_al:LIPIcs.FUN.2021.7,
  author =	{Brunner, Josh and Chung, Lily and Demaine, Erik D. and Hendrickson, Dylan and Hesterberg, Adam and Suhl, Adam and Zeff, Avi},
  title =	{{1 X 1 Rush Hour with Fixed Blocks Is PSPACE-Complete}},
  booktitle =	{10th International Conference on Fun with Algorithms (FUN 2021)},
  pages =	{7:1--7:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-145-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{157},
  editor =	{Farach-Colton, Martin and Prencipe, Giuseppe and Uehara, Ryuhei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2021.7},
  URN =		{urn:nbn:de:0030-drops-127681},
  doi =		{10.4230/LIPIcs.FUN.2021.7},
  annote =	{Keywords: puzzles, sliding blocks, PSPACE-hardness}
}
Document
Better Practical Algorithms for rSPR Distance and Hybridization Number

Authors: Kohei Yamada, Zhi-Zhong Chen, and Lusheng Wang

Published in: LIPIcs, Volume 143, 19th International Workshop on Algorithms in Bioinformatics (WABI 2019)


Abstract
The problem of computing the rSPR distance of two phylogenetic trees (denoted by RDC) is NP-hard and so is the problem of computing the hybridization number of two phylogenetic trees (denoted by HNC). Since they are important problems in phylogenetics, they have been studied extensively in the literature. Indeed, quite a number of exact or approximation algorithms have been designed and implemented for them. In this paper, we design and implement one exact algorithm for HNC and several approximation algorithms for RDC and HNC. Our experimental results show that the resulting exact program is much faster (namely, more than 80 times faster for the easiest dataset used in the experiments) than the previous best and its superiority in speed becomes even more significant for more difficult instances. Moreover, the resulting approximation programs output much better results than the previous bests; indeed, the outputs are always nearly optimal and often optimal. Of particular interest is the usage of the Monte Carlo tree search (MCTS) method in the design of our approximation algorithms. Our experimental results show that with MCTS, we can often solve HNC exactly within short time.

Cite as

Kohei Yamada, Zhi-Zhong Chen, and Lusheng Wang. Better Practical Algorithms for rSPR Distance and Hybridization Number. In 19th International Workshop on Algorithms in Bioinformatics (WABI 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 143, pp. 5:1-5:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{yamada_et_al:LIPIcs.WABI.2019.5,
  author =	{Yamada, Kohei and Chen, Zhi-Zhong and Wang, Lusheng},
  title =	{{Better Practical Algorithms for rSPR Distance and Hybridization Number}},
  booktitle =	{19th International Workshop on Algorithms in Bioinformatics (WABI 2019)},
  pages =	{5:1--5:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-123-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{143},
  editor =	{Huber, Katharina T. and Gusfield, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2019.5},
  URN =		{urn:nbn:de:0030-drops-110355},
  doi =		{10.4230/LIPIcs.WABI.2019.5},
  annote =	{Keywords: phylogenetic tree, fixed-parameter algorithms, approximation algorithms, Monte Carlo tree search}
}
  • Refine by Author
  • 1 Brunner, Josh
  • 1 Chen, Zhi-Zhong
  • 1 Chung, Lily
  • 1 Demaine, Erik D.
  • 1 Hendrickson, Dylan
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Environmental sciences
  • 1 Theory of computation → Problems, reductions and completeness
  • 1 Theory of computation → Theory and algorithms for application domains

  • Refine by Keyword
  • 1 Data bias
  • 1 Digital injustice
  • 1 Land use classification
  • 1 Monte Carlo tree search
  • 1 Multi-source sensor data
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2019
  • 1 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail