3 Search Results for "Coecke, Bob"


Document
Addition and Differentiation of ZX-Diagrams

Authors: Emmanuel Jeandel, Simon Perdrix, and Margarita Veshchezerova

Published in: LIPIcs, Volume 228, 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)


Abstract
The ZX-calculus is a powerful framework for reasoning in quantum computing. It provides in particular a compact representation of matrices of interests. A peculiar property of the ZX-calculus is the absence of a formal sum allowing the linear combinations of arbitrary ZX-diagrams. The universality of the formalism guarantees however that for any two ZX-diagrams, the sum of their interpretations can be represented by a ZX-diagram. We introduce a general, inductive definition of the addition of ZX-diagrams, relying on the construction of controlled diagrams. Based on this addition technique, we provide an inductive differentiation of ZX-diagrams. Indeed, given a ZX-diagram with variables in the description of its angles, one can differentiate the diagram according to one of these variables. Differentiation is ubiquitous in quantum mechanics and quantum computing (e.g. for solving optimization problems). Technically, differentiation of ZX-diagrams is strongly related to summation as witnessed by the product rules. We also introduce an alternative, non inductive, differentiation technique rather based on the isolation of the variables. Finally, we apply our results to deduce a diagram for an Ising Hamiltonian.

Cite as

Emmanuel Jeandel, Simon Perdrix, and Margarita Veshchezerova. Addition and Differentiation of ZX-Diagrams. In 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 228, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{jeandel_et_al:LIPIcs.FSCD.2022.13,
  author =	{Jeandel, Emmanuel and Perdrix, Simon and Veshchezerova, Margarita},
  title =	{{Addition and Differentiation of ZX-Diagrams}},
  booktitle =	{7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-233-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{228},
  editor =	{Felty, Amy P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2022.13},
  URN =		{urn:nbn:de:0030-drops-162946},
  doi =		{10.4230/LIPIcs.FSCD.2022.13},
  annote =	{Keywords: ZX calculus, Addition of ZX diagrams, Diagrammatic differentiation}
}
Document
Open System Categorical Quantum Semantics in Natural Language Processing

Authors: Robin Piedeleu, Dimitri Kartsaklis, Bob Coecke, and Mehrnoosh Sadrzadeh

Published in: LIPIcs, Volume 35, 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015)


Abstract
Originally inspired by categorical quantum mechanics (Abramsky and Coecke, LiCS'04), the categorical compositional distributional model of natural language meaning of Coecke, Sadrzadeh and Clark provides a conceptually motivated procedure to compute the meaning of a sentence, given its grammatical structure within a Lambek pregroup and a vectorial representation of the meaning of its parts. Moreover, just like CQM allows for varying the model in which we interpret quantum axioms, one can also vary the model in which we interpret word meaning. In this paper we show that further developments in categorical quantum mechanics are relevant to natural language processing too. Firstly, Selinger's CPM-construction allows for explicitly taking into account lexical ambiguity and distinguishing between the two inherently different notions of homonymy and polysemy. In terms of the model in which we interpret word meaning, this means a passage from the vector space model to density matrices. Despite this change of model, standard empirical methods for comparing meanings can be easily adopted, which we demonstrate by a small-scale experiment on real-world data. Secondly, commutative classical structures as well as their non-commutative counterparts that arise in the image of the CPM-construction allow for encoding relative pronouns, verbs and adjectives, and finally, iteration of the CPM-construction, something that has no counterpart in the quantum realm, enables one to accommodate both entailment and ambiguity.

Cite as

Robin Piedeleu, Dimitri Kartsaklis, Bob Coecke, and Mehrnoosh Sadrzadeh. Open System Categorical Quantum Semantics in Natural Language Processing. In 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 35, pp. 270-289, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{piedeleu_et_al:LIPIcs.CALCO.2015.270,
  author =	{Piedeleu, Robin and Kartsaklis, Dimitri and Coecke, Bob and Sadrzadeh, Mehrnoosh},
  title =	{{Open System Categorical Quantum Semantics in Natural Language Processing}},
  booktitle =	{6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015)},
  pages =	{270--289},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-84-2},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{35},
  editor =	{Moss, Lawrence S. and Sobocinski, Pawel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2015.270},
  URN =		{urn:nbn:de:0030-drops-55398},
  doi =		{10.4230/LIPIcs.CALCO.2015.270},
  annote =	{Keywords: category theory, density matrices, distributional models, semantics}
}
Document
Discrete classical vs. continuous quantum data in abstract quantum mechanics

Authors: Samson Abramsky and Bob Coecke

Published in: Dagstuhl Seminar Proceedings, Volume 4351, Spatial Representation: Discrete vs. Continuous Computational Models (2005)


Abstract
``Quantum'' stands for for the concepts (both operational and formal) which had to be added to classical physics in order to understand otherwise unexplainable observed phenomena such as the structure of the spectral lines in atomic spectra. While the basic part of classical mechanics deals with the (essentially) reversible dynamics, quantum required adding the notions of ``measurement'' and (possibly non-local) ``correlations'' to the discussion. Crucially, all this comes with a ``probabilistic calculus''. The corresponding mathematical formalism was considered to have reached maturity in [von Neumann 1932], but there are some manifest problems with that formalism: (i) While measurements are applied to physical systems, application of their formal counterpart (i.e. a self-adjoint linear operator) to the vector representing that state of the system in no way reflects how the state changes during the act of measurement. Analogously, the composite of two self-adjoint operators has no physical significance while in practice measurements can be effectuated sequentially. More generally, the formal types in von Neumann's formalism do not reflect the nature of the corresponding underlying concept at all! (ii) Part of the problem regarding the measurements discussed above is that in the von Neumann formalism there is no place for storage, manipulation and exchange of the classical data obtained from measurements. Protocols such as quantum teleportation involving these cannot be given a full formal description. (iii) The behavioral properties of quantum entanglement which for example enable continuous data exchange using only finitary communication are hidden in the formalism. In [Abramsky and Coecke 2004] we addressed all these problems, and in addition provided a purely categorical axiomatization of quantum mechanics. The concepts of the abstract quantum mechanics are formulated relative to a strongly compact closed category with biproducts (of which the category FdHilb of finite dimensional Hilbert spaces and linear maps is an example). Preparations, measurements, either destructive or not, classical data exchange are all morphisms in that category, and their types fully reflect their kinds. Correctness properties of standard quantum protocols can be abstractly proven. Surprisingly, in this seemingly purely qualitative setting even the quantitative Born rule arises, that is the rule which tells you how to calculate the probabilities. Indeed, each such category has as endomorphism Hom of the tensor unit an abelian semiring of `scalars', and a special subset of these scalars will play the role of weights: each scalar induces a natural transformation which propagates through physical processes, and when a `state' undergoes a `measurement', the composition of the corresponding morphisms gives rise to the weight. Hence the probabilistic weights live within the category of processes. J. von Neumann. Mathematische Grundlagen der Quantenmechanik. Springer-Verlag (1932). English translation in Mathematical Foundations of Quantum Mechanics. Princeton University Press (1955). S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In the proceedings of LiCS'04 (2004). An extended version is available at arXiv:quant-ph/0402130 A more reader friendly version entitled `Quantum information flow, concretely, abstractly' is at http://www.vub.ac.be/CLEA/Bob/Papers/QPL.pdf

Cite as

Samson Abramsky and Bob Coecke. Discrete classical vs. continuous quantum data in abstract quantum mechanics. In Spatial Representation: Discrete vs. Continuous Computational Models. Dagstuhl Seminar Proceedings, Volume 4351, pp. 1-21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005)


Copy BibTex To Clipboard

@InProceedings{abramsky_et_al:DagSemProc.04351.14,
  author =	{Abramsky, Samson and Coecke, Bob},
  title =	{{Discrete classical vs. continuous quantum data in abstract quantum mechanics}},
  booktitle =	{Spatial Representation: Discrete vs. Continuous Computational Models},
  pages =	{1--21},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2005},
  volume =	{4351},
  editor =	{Ralph Kopperman and Michael B. Smyth and Dieter Spreen and Julian Webster},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.04351.14},
  URN =		{urn:nbn:de:0030-drops-1316},
  doi =		{10.4230/DagSemProc.04351.14},
  annote =	{Keywords: Category theory , strong compact closure , quantum information-flow}
}
  • Refine by Author
  • 2 Coecke, Bob
  • 1 Abramsky, Samson
  • 1 Jeandel, Emmanuel
  • 1 Kartsaklis, Dimitri
  • 1 Perdrix, Simon
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Axiomatic semantics
  • 1 Theory of computation → Quantum computation theory

  • Refine by Keyword
  • 1 Addition of ZX diagrams
  • 1 Category theory
  • 1 Diagrammatic differentiation
  • 1 ZX calculus
  • 1 category theory
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2005
  • 1 2015
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail