4 Search Results for "Dujmovic, Vida"


Document
An Optimal Algorithm for Product Structure in Planar Graphs

Authors: Prosenjit Bose, Pat Morin, and Saeed Odak

Published in: LIPIcs, Volume 227, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)


Abstract
The Product Structure Theorem for planar graphs (Dujmović et al. JACM, 67(4):22) states that any planar graph is contained in the strong product of a planar 3-tree, a path, and a 3-cycle. We give a simple linear-time algorithm for finding this decomposition as well as several related decompositions. This improves on the previous O(nlog n) time algorithm (Morin. Algorithmica, 85(5):1544-1558).

Cite as

Prosenjit Bose, Pat Morin, and Saeed Odak. An Optimal Algorithm for Product Structure in Planar Graphs. In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 19:1-19:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bose_et_al:LIPIcs.SWAT.2022.19,
  author =	{Bose, Prosenjit and Morin, Pat and Odak, Saeed},
  title =	{{An Optimal Algorithm for Product Structure in Planar Graphs}},
  booktitle =	{18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)},
  pages =	{19:1--19:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-236-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{227},
  editor =	{Czumaj, Artur and Xin, Qin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.19},
  URN =		{urn:nbn:de:0030-drops-161797},
  doi =		{10.4230/LIPIcs.SWAT.2022.19},
  annote =	{Keywords: Planar graphs, product structure}
}
Document
Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers

Authors: Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmović, Robin Flatland, Matias Korman, Belen Palop, Irene Parada, André van Renssen, and Vera Sacristán

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
We present the first universal reconfiguration algorithm for transforming a modular robot between any two facet-connected square-grid configurations using pivot moves. More precisely, we show that five extra "helper" modules ("musketeers") suffice to reconfigure the remaining n modules between any two given configurations. Our algorithm uses O(n^2) pivot moves, which is worst-case optimal. Previous reconfiguration algorithms either require less restrictive "sliding" moves, do not preserve facet-connectivity, or for the setting we consider, could only handle a small subset of configurations defined by a local forbidden pattern. Configurations with the forbidden pattern do have disconnected reconfiguration graphs (discrete configuration spaces), and indeed we show that they can have an exponential number of connected components. But forbidding the local pattern throughout the configuration is far from necessary, as we show that just a constant number of added modules (placed to be freely reconfigurable) suffice for universal reconfigurability. We also classify three different models of natural pivot moves that preserve facet-connectivity, and show separations between these models.

Cite as

Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmović, Robin Flatland, Matias Korman, Belen Palop, Irene Parada, André van Renssen, and Vera Sacristán. Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{akitaya_et_al:LIPIcs.ESA.2019.3,
  author =	{Akitaya, Hugo A. and Arkin, Esther M. and Damian, Mirela and Demaine, Erik D. and Dujmovi\'{c}, Vida and Flatland, Robin and Korman, Matias and Palop, Belen and Parada, Irene and van Renssen, Andr\'{e} and Sacrist\'{a}n, Vera},
  title =	{{Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{3:1--3:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.3},
  URN =		{urn:nbn:de:0030-drops-111247},
  doi =		{10.4230/LIPIcs.ESA.2019.3},
  annote =	{Keywords: Reconfiguration, geometric algorithm, pivoting squares, modular robots}
}
Document
Dual Circumference and Collinear Sets

Authors: Vida Dujmović and Pat Morin

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
We show that, if an n-vertex triangulation T of maximum degree Delta has a dual that contains a cycle of length l, then T has a non-crossing straight-line drawing in which some set, called a collinear set, of Omega(l/Delta^4) vertices lie on a line. Using the current lower bounds on the length of longest cycles in 3-regular 3-connected graphs, this implies that every n-vertex planar graph of maximum degree Delta has a collinear set of size Omega(n^{0.8}/Delta^4). Very recently, Dujmović et al. (SODA 2019) showed that, if S is a collinear set in a triangulation T then, for any point set X subset R^2 with |X|=|S|, T has a non-crossing straight-line drawing in which the vertices of S are drawn on the points in X. Because of this, collinear sets have numerous applications in graph drawing and related areas.

Cite as

Vida Dujmović and Pat Morin. Dual Circumference and Collinear Sets. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 29:1-29:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dujmovic_et_al:LIPIcs.SoCG.2019.29,
  author =	{Dujmovi\'{c}, Vida and Morin, Pat},
  title =	{{Dual Circumference and Collinear Sets}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{29:1--29:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.29},
  URN =		{urn:nbn:de:0030-drops-104338},
  doi =		{10.4230/LIPIcs.SoCG.2019.29},
  annote =	{Keywords: Planar graphs, collinear sets, untangling, column planarity, universal point subsets, partial simultaneous geometric drawings}
}
Document
Geodesic Obstacle Representation of Graphs

Authors: Prosenjit Bose, Paz Carmi, Vida Dujmovic, Saeed Mehrabi, Fabrizio Montecchiani, Pat Morin, and Luis Fernando Schultz Xavier da Silveira

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
An obstacle representation of a graph is a mapping of the vertices onto points in the plane and a set of connected regions of the plane (called obstacles) such that the straight-line segment connecting the points corresponding to two vertices does not intersect any obstacles if and only if the vertices are adjacent in the graph. The obstacle representation and its plane variant (in which the resulting representation is a plane straight-line embedding of the graph) have been extensively studied with the main objective of minimizing the number of obstacles. Recently, Biedl and Mehrabi [Therese C. Biedl and Saeed Mehrabi, 2017] studied non-blocking grid obstacle representations of graphs in which the vertices of the graph are mapped onto points in the plane while the straight-line segments representing the adjacency between the vertices is replaced by the L_1 (Manhattan) shortest paths in the plane that avoid obstacles. In this paper, we introduce the notion of geodesic obstacle representations of graphs with the main goal of providing a generalized model, which comes naturally when viewing line segments as shortest paths in the Euclidean plane. To this end, we extend the definition of obstacle representation by allowing some obstacles-avoiding shortest path between the corresponding points in the underlying metric space whenever the vertices are adjacent in the graph. We consider both general and plane variants of geodesic obstacle representations (in a similar sense to obstacle representations) under any polyhedral distance function in R^d as well as shortest path distances in graphs. Our results generalize and unify the notions of obstacle representations, plane obstacle representations and grid obstacle representations, leading to a number of questions on such representations.

Cite as

Prosenjit Bose, Paz Carmi, Vida Dujmovic, Saeed Mehrabi, Fabrizio Montecchiani, Pat Morin, and Luis Fernando Schultz Xavier da Silveira. Geodesic Obstacle Representation of Graphs. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 23:1-23:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bose_et_al:LIPIcs.ICALP.2018.23,
  author =	{Bose, Prosenjit and Carmi, Paz and Dujmovic, Vida and Mehrabi, Saeed and Montecchiani, Fabrizio and Morin, Pat and Silveira, Luis Fernando Schultz Xavier da},
  title =	{{Geodesic Obstacle Representation of Graphs}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{23:1--23:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.23},
  URN =		{urn:nbn:de:0030-drops-90274},
  doi =		{10.4230/LIPIcs.ICALP.2018.23},
  annote =	{Keywords: Obstacle representation, Grid obstacle representation, Geodesic obstacle representation}
}
  • Refine by Author
  • 3 Morin, Pat
  • 2 Bose, Prosenjit
  • 2 Dujmović, Vida
  • 1 Akitaya, Hugo A.
  • 1 Arkin, Esther M.
  • Show More...

  • Refine by Classification
  • 2 Mathematics of computing → Graph theory
  • 2 Theory of computation → Computational geometry
  • 1 Human-centered computing → Graph drawings
  • 1 Mathematics of computing → Extremal graph theory
  • 1 Mathematics of computing → Graph algorithms
  • Show More...

  • Refine by Keyword
  • 2 Planar graphs
  • 1 Geodesic obstacle representation
  • 1 Grid obstacle representation
  • 1 Obstacle representation
  • 1 Reconfiguration
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2019
  • 1 2018
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail