5 Search Results for "Escard�, Mart�n H."


Document
Predicative Aspects of Order Theory in Univalent Foundations

Authors: Tom de Jong and Martín Hötzel Escardó

Published in: LIPIcs, Volume 195, 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)


Abstract
We investigate predicative aspects of order theory in constructive univalent foundations. By predicative and constructive, we respectively mean that we do not assume Voevodsky’s propositional resizing axioms or excluded middle. Our work complements existing work on predicative mathematics by exploring what cannot be done predicatively in univalent foundations. Our first main result is that nontrivial (directed or bounded) complete posets are necessarily large. That is, if such a nontrivial poset is small, then weak propositional resizing holds. It is possible to derive full propositional resizing if we strengthen nontriviality to positivity. The distinction between nontriviality and positivity is analogous to the distinction between nonemptiness and inhabitedness. We prove our results for a general class of posets, which includes directed complete posets, bounded complete posets and sup-lattices, using a technical notion of a δ_V-complete poset. We also show that nontrivial locally small δ_V-complete posets necessarily lack decidable equality. Specifically, we derive weak excluded middle from assuming a nontrivial locally small δ_V-complete poset with decidable equality. Moreover, if we assume positivity instead of nontriviality, then we can derive full excluded middle. Secondly, we show that each of Zorn’s lemma, Tarski’s greatest fixed point theorem and Pataraia’s lemma implies propositional resizing. Hence, these principles are inherently impredicative and a predicative development of order theory must therefore do without them. Finally, we clarify, in our predicative setting, the relation between the traditional definition of sup-lattice that requires suprema for all subsets and our definition that asks for suprema of all small families.

Cite as

Tom de Jong and Martín Hötzel Escardó. Predicative Aspects of Order Theory in Univalent Foundations. In 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 195, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dejong_et_al:LIPIcs.FSCD.2021.8,
  author =	{de Jong, Tom and Escard\'{o}, Mart{\'\i}n H\"{o}tzel},
  title =	{{Predicative Aspects of Order Theory in Univalent Foundations}},
  booktitle =	{6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-191-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{195},
  editor =	{Kobayashi, Naoki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021.8},
  URN =		{urn:nbn:de:0030-drops-142461},
  doi =		{10.4230/LIPIcs.FSCD.2021.8},
  annote =	{Keywords: order theory, constructivity, predicativity, univalent foundations}
}
Document
Domain Theory in Constructive and Predicative Univalent Foundations

Authors: Tom de Jong and Martín Hötzel Escardó

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
We develop domain theory in constructive univalent foundations without Voevodsky’s resizing axioms. In previous work in this direction, we constructed the Scott model of PCF and proved its computational adequacy, based on directed complete posets (dcpos). Here we further consider algebraic and continuous dcpos, and construct Scott’s D_∞ model of the untyped λ-calculus. A common approach to deal with size issues in a predicative foundation is to work with information systems or abstract bases or formal topologies rather than dcpos, and approximable relations rather than Scott continuous functions. Here we instead accept that dcpos may be large and work with type universes to account for this. For instance, in the Scott model of PCF, the dcpos have carriers in the second universe U₁ and suprema of directed families with indexing type in the first universe U₀. Seeing a poset as a category in the usual way, we can say that these dcpos are large, but locally small, and have small filtered colimits. In the case of algebraic dcpos, in order to deal with size issues, we proceed mimicking the definition of accessible category. With such a definition, our construction of Scott’s D_∞ again gives a large, locally small, algebraic dcpo with small directed suprema.

Cite as

Tom de Jong and Martín Hötzel Escardó. Domain Theory in Constructive and Predicative Univalent Foundations. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 28:1-28:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dejong_et_al:LIPIcs.CSL.2021.28,
  author =	{de Jong, Tom and Escard\'{o}, Mart{\'\i}n H\"{o}tzel},
  title =	{{Domain Theory in Constructive and Predicative Univalent Foundations}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{28:1--28:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.28},
  URN =		{urn:nbn:de:0030-drops-134625},
  doi =		{10.4230/LIPIcs.CSL.2021.28},
  annote =	{Keywords: domain theory, constructivity, predicativity, univalent foundations}
}
Document
Parametricity, Automorphisms of the Universe, and Excluded Middle

Authors: Auke B. Booij, Martín H. Escardó, Peter LeFanu Lumsdaine, and Michael Shulman

Published in: LIPIcs, Volume 97, 22nd International Conference on Types for Proofs and Programs (TYPES 2016)


Abstract
It is known that one can construct non-parametric functions by assuming classical axioms. Our work is a converse to that: we prove classical axioms in dependent type theory assuming specific instances of non-parametricity. We also address the interaction between classical axioms and the existence of automorphisms of a type universe. We work over intensional Martin-Löf dependent type theory, and for some results assume further principles including function extensionality, propositional extensionality, propositional truncation, and the univalence axiom.

Cite as

Auke B. Booij, Martín H. Escardó, Peter LeFanu Lumsdaine, and Michael Shulman. Parametricity, Automorphisms of the Universe, and Excluded Middle. In 22nd International Conference on Types for Proofs and Programs (TYPES 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 97, pp. 7:1-7:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{booij_et_al:LIPIcs.TYPES.2016.7,
  author =	{Booij, Auke B. and Escard\'{o}, Mart{\'\i}n H. and Lumsdaine, Peter LeFanu and Shulman, Michael},
  title =	{{Parametricity, Automorphisms of the Universe, and Excluded Middle}},
  booktitle =	{22nd International Conference on Types for Proofs and Programs (TYPES 2016)},
  pages =	{7:1--7:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-065-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{97},
  editor =	{Ghilezan, Silvia and Geuvers, Herman and Ivetic, Jelena},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2016.7},
  URN =		{urn:nbn:de:0030-drops-98554},
  doi =		{10.4230/LIPIcs.TYPES.2016.7},
  annote =	{Keywords: relational parametricity, dependent type theory, univalent foundations, homotopy type theory, excluded middle, classical mathematics, constructive mat}
}
Document
Partial Elements and Recursion via Dominances in Univalent Type Theory

Authors: Martín H. Escardó and Cory M. Knapp

Published in: LIPIcs, Volume 82, 26th EACSL Annual Conference on Computer Science Logic (CSL 2017)


Abstract
We begin by revisiting partiality in univalent type theory via the notion of dominance. We then perform first steps in constructive computability theory, discussing the consequences of working with computability as property or structure, without assuming countable choice or Markov’s principle. A guiding question is what, if any, notion of partial function allows the proposition “all partial functions on natural numbers are Turing computable” to be consistent.

Cite as

Martín H. Escardó and Cory M. Knapp. Partial Elements and Recursion via Dominances in Univalent Type Theory. In 26th EACSL Annual Conference on Computer Science Logic (CSL 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 82, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{escardo_et_al:LIPIcs.CSL.2017.21,
  author =	{Escard\'{o}, Mart{\'\i}n H. and Knapp, Cory M.},
  title =	{{Partial Elements and Recursion via Dominances in Univalent Type Theory}},
  booktitle =	{26th EACSL Annual Conference on Computer Science Logic (CSL 2017)},
  pages =	{21:1--21:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-045-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{82},
  editor =	{Goranko, Valentin and Dam, Mads},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2017.21},
  URN =		{urn:nbn:de:0030-drops-76822},
  doi =		{10.4230/LIPIcs.CSL.2017.21},
  annote =	{Keywords: univalent type theory, homotopy type theory, partial function, dominance, recursion theory, computability theory}
}
Document
The Inconsistency of a Brouwerian Continuity Principle with the Curry–Howard Interpretation

Authors: Martín Hötzel Escardó and Chuangjie Xu

Published in: LIPIcs, Volume 38, 13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015)


Abstract
If all functions (N -> N) -> N are continuous then 0 = 1. We establish this in intensional (and hence also in extensional) intuitionistic dependent-type theories, with existence in the formulation of continuity expressed as a Sigma type via the Curry-Howard interpretation. But with an intuitionistic notion of anonymous existence, defined as the propositional truncation of Sigma, it is consistent that all such functions are continuous. A model is Johnstone’s topological topos. On the other hand, any of these two intuitionistic conceptions of existence give the same, consistent, notion of uniform continuity for functions (N -> 2) -> N, again valid in the topological topos. It is open whether the consistency of (uniform) continuity extends to homotopy type theory. The theorems of type theory informally proved here are also formally proved in Agda, but the development presented here is self-contained and doesn't show Agda code.

Cite as

Martín Hötzel Escardó and Chuangjie Xu. The Inconsistency of a Brouwerian Continuity Principle with the Curry–Howard Interpretation. In 13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 38, pp. 153-164, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{hotzelescardo_et_al:LIPIcs.TLCA.2015.153,
  author =	{H\"{o}tzel Escard\'{o}, Mart{\'\i}n and Xu, Chuangjie},
  title =	{{The Inconsistency of a Brouwerian Continuity Principle with the Curry–Howard Interpretation}},
  booktitle =	{13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015)},
  pages =	{153--164},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-87-3},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{38},
  editor =	{Altenkirch, Thorsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TLCA.2015.153},
  URN =		{urn:nbn:de:0030-drops-51618},
  doi =		{10.4230/LIPIcs.TLCA.2015.153},
  annote =	{Keywords: Dependent type, intensional Martin-L\"{o}f type theory, Curry-Howard interpretation, constructive mathematics, Brouwerian continuity axioms, anonymous exi}
}
  • Refine by Author
  • 2 Escardó, Martín H.
  • 2 Escardó, Martín Hötzel
  • 2 de Jong, Tom
  • 1 Booij, Auke B.
  • 1 Hötzel Escardó, Martín
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Constructive mathematics
  • 2 Theory of computation → Type theory

  • Refine by Keyword
  • 3 univalent foundations
  • 2 constructivity
  • 2 homotopy type theory
  • 2 predicativity
  • 1 Brouwerian continuity axioms
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2021
  • 1 2015
  • 1 2017
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail