701 Search Results for "F�th, Christian"


Document
Recent Trends in Graph Decomposition (Dagstuhl Seminar 23331)

Authors: George Karypis, Christian Schulz, Darren Strash, Deepak Ajwani, Rob H. Bisseling, Katrin Casel, Ümit V. Çatalyürek, Cédric Chevalier, Florian Chudigiewitsch, Marcelo Fonseca Faraj, Michael Fellows, Lars Gottesbüren, Tobias Heuer, Kamer Kaya, Jakub Lacki, Johannes Langguth, Xiaoye Sherry Li, Ruben Mayer, Johannes Meintrup, Yosuke Mizutani, François Pellegrini, Fabrizio Petrini, Frances Rosamond, Ilya Safro, Sebastian Schlag, Roohani Sharma, Blair D. Sullivan, Bora Uçar, and Albert-Jan Yzelman

Published in: Dagstuhl Reports, Volume 13, Issue 8 (2024)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23331 "Recent Trends in Graph Decomposition", which took place from 13. August to 18. August, 2023. The seminar brought together 33 experts from academia and industry to discuss graph decomposition, a pivotal technique for handling massive graphs in applications such as social networks and scientific simulations. The seminar addressed the challenges posed by contemporary hardware designs, the potential of deep neural networks and reinforcement learning in developing heuristics, the unique optimization requirements of large sparse data, and the need for scalable algorithms suitable for emerging architectures. Through presentations, discussions, and collaborative sessions, the event fostered an exchange of innovative ideas, leading to the creation of community notes highlighting key open problems in the field.

Cite as

George Karypis, Christian Schulz, Darren Strash, Deepak Ajwani, Rob H. Bisseling, Katrin Casel, Ümit V. Çatalyürek, Cédric Chevalier, Florian Chudigiewitsch, Marcelo Fonseca Faraj, Michael Fellows, Lars Gottesbüren, Tobias Heuer, Kamer Kaya, Jakub Lacki, Johannes Langguth, Xiaoye Sherry Li, Ruben Mayer, Johannes Meintrup, Yosuke Mizutani, François Pellegrini, Fabrizio Petrini, Frances Rosamond, Ilya Safro, Sebastian Schlag, Roohani Sharma, Blair D. Sullivan, Bora Uçar, and Albert-Jan Yzelman. Recent Trends in Graph Decomposition (Dagstuhl Seminar 23331). In Dagstuhl Reports, Volume 13, Issue 8, pp. 1-45, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{karypis_et_al:DagRep.13.8.1,
  author =	{Karypis, George and Schulz, Christian and Strash, Darren and Ajwani, Deepak and Bisseling, Rob H. and Casel, Katrin and \c{C}ataly\"{u}rek, \"{U}mit V. and Chevalier, C\'{e}dric and Chudigiewitsch, Florian and Faraj, Marcelo Fonseca and Fellows, Michael and Gottesb\"{u}ren, Lars and Heuer, Tobias and Kaya, Kamer and Lacki, Jakub and Langguth, Johannes and Li, Xiaoye Sherry and Mayer, Ruben and Meintrup, Johannes and Mizutani, Yosuke and Pellegrini, Fran\c{c}ois and Petrini, Fabrizio and Rosamond, Frances and Safro, Ilya and Schlag, Sebastian and Sharma, Roohani and Sullivan, Blair D. and U\c{c}ar, Bora and Yzelman, Albert-Jan},
  title =	{{Recent Trends in Graph Decomposition (Dagstuhl Seminar 23331)}},
  pages =	{1--45},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{8},
  editor =	{Karypis, George and Schulz, Christian and Strash, Darren},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.8.1},
  URN =		{urn:nbn:de:0030-drops-198114},
  doi =		{10.4230/DagRep.13.8.1},
  annote =	{Keywords: combinatorial optimization, experimental algorithmics, parallel algorithms}
}
Document
Modal Logic Is More Succinct Iff Bi-Implication Is Available in Some Form

Authors: Christoph Berkholz, Dietrich Kuske, and Christian Schwarz

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Is it possible to write significantly smaller formulae, when using more Boolean operators in addition to the De Morgan basis (and, or, not)? For propositional logic a negative answer was given by Pratt: every formula with additional operators can be translated to the De Morgan basis with only polynomial increase in size. Surprisingly, for modal logic the picture is different: we show that adding bi-implication allows to write exponentially smaller formulae. Moreover, we provide a complete classification of finite sets of Boolean operators showing they are either of no help (allow polynomial translations to the De Morgan basis) or can express properties as succinct as modal logic with additional bi-implication. More precisely, these results are shown for the modal logic T (and therefore for K). We complement this result showing that the modal logic S5 behaves as propositional logic: no additional Boolean operators make it possible to write significantly smaller formulae.

Cite as

Christoph Berkholz, Dietrich Kuske, and Christian Schwarz. Modal Logic Is More Succinct Iff Bi-Implication Is Available in Some Form. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berkholz_et_al:LIPIcs.STACS.2024.12,
  author =	{Berkholz, Christoph and Kuske, Dietrich and Schwarz, Christian},
  title =	{{Modal Logic Is More Succinct Iff Bi-Implication Is Available in Some Form}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.12},
  URN =		{urn:nbn:de:0030-drops-197228},
  doi =		{10.4230/LIPIcs.STACS.2024.12},
  annote =	{Keywords: succinctness, modal logic}
}
Document
Fixed-Parameter Debordering of Waring Rank

Authors: Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Border complexity measures are defined via limits (or topological closures), so that any function which can approximated arbitrarily closely by low complexity functions itself has low border complexity. Debordering is the task of proving an upper bound on some non-border complexity measure in terms of a border complexity measure, thus getting rid of limits. Debordering is at the heart of understanding the difference between Valiant’s determinant vs permanent conjecture, and Mulmuley and Sohoni’s variation which uses border determinantal complexity. The debordering of matrix multiplication tensors by Bini played a pivotal role in the development of efficient matrix multiplication algorithms. Consequently, debordering finds applications in both establishing computational complexity lower bounds and facilitating algorithm design. Currently, very few debordering results are known. In this work, we study the question of debordering the border Waring rank of polynomials. Waring and border Waring rank are very well studied measures in the context of invariant theory, algebraic geometry, and matrix multiplication algorithms. For the first time, we obtain a Waring rank upper bound that is exponential in the border Waring rank and only linear in the degree. All previous known results were exponential in the degree. For polynomials with constant border Waring rank, our results imply an upper bound on the Waring rank linear in degree, which previously was only known for polynomials with border Waring rank at most 5.

Cite as

Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov. Fixed-Parameter Debordering of Waring Rank. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 30:1-30:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dutta_et_al:LIPIcs.STACS.2024.30,
  author =	{Dutta, Pranjal and Gesmundo, Fulvio and Ikenmeyer, Christian and Jindal, Gorav and Lysikov, Vladimir},
  title =	{{Fixed-Parameter Debordering of Waring Rank}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{30:1--30:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.30},
  URN =		{urn:nbn:de:0030-drops-197403},
  doi =		{10.4230/LIPIcs.STACS.2024.30},
  annote =	{Keywords: border complexity, Waring rank, debordering, apolarity}
}
Document
On the Power of Border Width-2 ABPs over Fields of Characteristic 2

Authors: Pranjal Dutta, Christian Ikenmeyer, Balagopal Komarath, Harshil Mittal, Saraswati Girish Nanoti, and Dhara Thakkar

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The celebrated result by Ben-Or and Cleve [SICOMP92] showed that algebraic formulas are polynomially equivalent to width-3 algebraic branching programs (ABP) for computing polynomials. i.e., VF = VBP₃. Further, there are simple polynomials, such as ∑_{i = 1}⁸ x_i y_i, that cannot be computed by width-2 ABPs [Allender and Wang, CC16]. Bringmann, Ikenmeyer and Zuiddam, [JACM18], on the other hand, studied these questions in the setting of approximate (i.e., border complexity) computation, and showed the universality of border width-2 ABPs, over fields of characteristic ≠ 2. In particular, they showed that polynomials that can be approximated by formulas can also be approximated (with only a polynomial blowup in size) by width-2 ABPs, i.e., VF ̅ = VBP₂ ̅. The power of border width-2 algebraic branching programs when the characteristic of the field is 2 was left open. In this paper, we show that width-2 ABPs can approximate every polynomial irrespective of the field characteristic. We show that any polynomial f with 𝓁 monomials and with at most t odd-power indeterminates per monomial can be approximated by 𝒪(𝓁⋅ (deg(f)+2^t))-size width-2 ABPs. Since 𝓁 and t are finite, this proves universality of border width-2 ABPs. For univariate polynomials, we improve this upper-bound from O(deg(f)²) to O(deg(f)). Moreover, we show that, if a polynomial f can be approximated by small formulas, then the polynomial f^d, for some small power d, can be approximated by small width-2 ABPs. Therefore, even over fields of characteristic two, border width-2 ABPs are a reasonably powerful computational model. Our construction works over any field.

Cite as

Pranjal Dutta, Christian Ikenmeyer, Balagopal Komarath, Harshil Mittal, Saraswati Girish Nanoti, and Dhara Thakkar. On the Power of Border Width-2 ABPs over Fields of Characteristic 2. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dutta_et_al:LIPIcs.STACS.2024.31,
  author =	{Dutta, Pranjal and Ikenmeyer, Christian and Komarath, Balagopal and Mittal, Harshil and Nanoti, Saraswati Girish and Thakkar, Dhara},
  title =	{{On the Power of Border Width-2 ABPs over Fields of Characteristic 2}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.31},
  URN =		{urn:nbn:de:0030-drops-197419},
  doi =		{10.4230/LIPIcs.STACS.2024.31},
  annote =	{Keywords: Algebraic branching programs, border complexity, characteristic 2}
}
Document
Zero-Copy, Minimal-Blackout Virtual Machine Migrations Using Disaggregated Shared Memory

Authors: Andreas Grapentin, Felix Eberhardt, Tobias Zagorni, Andreas Polze, Michele Gazzetti, and Christian Pinto

Published in: OASIcs, Volume 116, 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)


Abstract
We propose a new live-migration paradigm for virtual machines called zero-copy migration. By making the working set of the virtual machine available on the destination host through transparently byte-addressable disaggregated memory, we remove the need for a pre-copy phase while simultaneously reducing the performance impact of the post-copy phase. We describe an open-source implementation of the proposed paradigm based on QEMU-KVM and libvirt, and we evaluate the efficiency of the approach with a deployment on a functional hardware prototype of a memory disaggregation system realized using ThymesisFlow. Using a series of configurable benchmarks, we show that the lead time and blackout time of the migration are equal to best-case scenarios of traditional pre-copy, post-copy and hybrid approaches. Key performance metrics from the perspective of applications running in the virtual machine, such as memory latency and throughput, are improved by up to three orders of magnitude, increasing both flexibility and responsiveness of live-migrations in the datacenter.

Cite as

Andreas Grapentin, Felix Eberhardt, Tobias Zagorni, Andreas Polze, Michele Gazzetti, and Christian Pinto. Zero-Copy, Minimal-Blackout Virtual Machine Migrations Using Disaggregated Shared Memory. In 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024). Open Access Series in Informatics (OASIcs), Volume 116, pp. 3:1-3:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grapentin_et_al:OASIcs.PARMA-DITAM.2024.3,
  author =	{Grapentin, Andreas and Eberhardt, Felix and Zagorni, Tobias and Polze, Andreas and Gazzetti, Michele and Pinto, Christian},
  title =	{{Zero-Copy, Minimal-Blackout Virtual Machine Migrations Using Disaggregated Shared Memory}},
  booktitle =	{15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)},
  pages =	{3:1--3:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-307-2},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{116},
  editor =	{Bispo, Jo\~{a}o and Xydis, Sotirios and Curzel, Serena and Sousa, Lu{\'\i}s Miguel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2024.3},
  URN =		{urn:nbn:de:0030-drops-196972},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2024.3},
  annote =	{Keywords: disaggregation, disaggregated memory, vm live migration, thymesisflow, power9, opencapi, performance evaluation, zero copy}
}
Document
Homogeneous Algebraic Complexity Theory and Algebraic Formulas

Authors: Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We study algebraic complexity classes and their complete polynomials under homogeneous linear projections, not just under the usual affine linear projections that were originally introduced by Valiant in 1979. These reductions are weaker yet more natural from a geometric complexity theory (GCT) standpoint, because the corresponding orbit closure formulations do not require the padding of polynomials. We give the first complete polynomials for VF, the class of sequences of polynomials that admit small algebraic formulas, under homogeneous linear projections: The sum of the entries of the non-commutative elementary symmetric polynomial in 3 by 3 matrices of homogeneous linear forms. Even simpler variants of the elementary symmetric polynomial are hard for the topological closure of a large subclass of VF: the sum of the entries of the non-commutative elementary symmetric polynomial in 2 by 2 matrices of homogeneous linear forms, and homogeneous variants of the continuant polynomial (Bringmann, Ikenmeyer, Zuiddam, JACM '18). This requires a careful study of circuits with arity-3 product gates.

Cite as

Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov. Homogeneous Algebraic Complexity Theory and Algebraic Formulas. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 43:1-43:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dutta_et_al:LIPIcs.ITCS.2024.43,
  author =	{Dutta, Pranjal and Gesmundo, Fulvio and Ikenmeyer, Christian and Jindal, Gorav and Lysikov, Vladimir},
  title =	{{Homogeneous Algebraic Complexity Theory and Algebraic Formulas}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{43:1--43:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.43},
  URN =		{urn:nbn:de:0030-drops-195713},
  doi =		{10.4230/LIPIcs.ITCS.2024.43},
  annote =	{Keywords: Homogeneous polynomials, Waring rank, Arithmetic formulas, Border complexity, Geometric Complexity theory, Symmetric polynomials}
}
Document
Eating Sandwiches: Modular and Lightweight Elimination of Transaction Reordering Attacks

Authors: Orestis Alpos, Ignacio Amores-Sesar, Christian Cachin, and Michelle Yeo

Published in: LIPIcs, Volume 286, 27th International Conference on Principles of Distributed Systems (OPODIS 2023)


Abstract
Traditional blockchains grant the miner of a block full control not only over which transactions but also their order. This constitutes a major flaw discovered with the introduction of decentralized finance and allows miners to perform MEV attacks. In this paper, we address the issue of sandwich attacks by providing a construction that takes as input a blockchain protocol and outputs a new blockchain protocol with the same security but in which sandwich attacks are not profitable. Furthermore, our protocol is fully decentralized with no trusted third parties or heavy cryptography primitives and carries a linear increase in latency and minimum computation overhead.

Cite as

Orestis Alpos, Ignacio Amores-Sesar, Christian Cachin, and Michelle Yeo. Eating Sandwiches: Modular and Lightweight Elimination of Transaction Reordering Attacks. In 27th International Conference on Principles of Distributed Systems (OPODIS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 286, pp. 12:1-12:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alpos_et_al:LIPIcs.OPODIS.2023.12,
  author =	{Alpos, Orestis and Amores-Sesar, Ignacio and Cachin, Christian and Yeo, Michelle},
  title =	{{Eating Sandwiches: Modular and Lightweight Elimination of Transaction Reordering Attacks}},
  booktitle =	{27th International Conference on Principles of Distributed Systems (OPODIS 2023)},
  pages =	{12:1--12:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-308-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{286},
  editor =	{Bessani, Alysson and D\'{e}fago, Xavier and Nakamura, Junya and Wada, Koichi and Yamauchi, Yukiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2023.12},
  URN =		{urn:nbn:de:0030-drops-195029},
  doi =		{10.4230/LIPIcs.OPODIS.2023.12},
  annote =	{Keywords: Consensus, MEV, Byzantine behavior, Rational behavior}
}
Document
Interval Selection in Data Streams: Weighted Intervals and the Insertion-Deletion Setting

Authors: Jacques Dark, Adithya Diddapur, and Christian Konrad

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
We study the Interval Selection problem in data streams: Given a stream of n intervals on the line, the objective is to compute a largest possible subset of non-overlapping intervals using O(|OPT|) space, where |OPT| is the size of an optimal solution. Previous work gave a 3/2-approximation for unit-length and a 2-approximation for arbitrary-length intervals [Emek et al., ICALP'12]. We extend this line of work to weighted intervals as well as to insertion-deletion streams. Our results include: 1) When considering weighted intervals, a (3/2+ε)-approximation can be achieved for unit intervals, but any constant factor approximation for arbitrary-length intervals requires space Ω(n). 2) In the insertion-deletion setting where intervals can both be added and deleted, we prove that, even without weights, computing a constant factor approximation for arbitrary-length intervals requires space Ω(n), whereas in the weighted unit-length intervals case a (2+ε)-approximation can be obtained. Our lower bound results are obtained via reductions to the recently introduced Chained-Index communication problem, further demonstrating the strength of this problem in the context of streaming geometric independent set problems.

Cite as

Jacques Dark, Adithya Diddapur, and Christian Konrad. Interval Selection in Data Streams: Weighted Intervals and the Insertion-Deletion Setting. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 24:1-24:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dark_et_al:LIPIcs.FSTTCS.2023.24,
  author =	{Dark, Jacques and Diddapur, Adithya and Konrad, Christian},
  title =	{{Interval Selection in Data Streams: Weighted Intervals and the Insertion-Deletion Setting}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{24:1--24:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.24},
  URN =		{urn:nbn:de:0030-drops-193976},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.24},
  annote =	{Keywords: Streaming Algorithms, Interval Selection, Weighted Intervals, Insertion-deletion Streams}
}
Document
Correlated-Output Differential Privacy and Applications to Dark Pools

Authors: James Hsin-yu Chiang, Bernardo David, Mariana Gama, and Christian Janos Lebeda

Published in: LIPIcs, Volume 282, 5th Conference on Advances in Financial Technologies (AFT 2023)


Abstract
In the classical setting of differential privacy, a privacy-preserving query is performed on a private database, after which the query result is released to the analyst; a differentially private query ensures that the presence of a single database entry is protected from the analyst’s view. In this work, we contribute the first definitional framework for differential privacy in the trusted curator setting (Fig. 1); clients submit private inputs to the trusted curator, which then computes individual outputs privately returned to each client. The adversary is more powerful than the standard setting; it can corrupt up to n-1 clients and subsequently decide inputs and learn outputs of corrupted parties. In this setting, the adversary also obtains leakage from the honest output that is correlated with a corrupted output. Standard differentially private mechanisms protect client inputs but do not mitigate output correlation leaking arbitrary client information, which can forfeit client privacy completely. We initiate the investigation of a novel notion of correlated-output differential privacy to bound the leakage from output correlation in the trusted curator setting. We define the satisfaction of both standard and correlated-output differential privacy as round differential privacy and highlight the relevance of this novel privacy notion to all application domains in the trusted curator model. We explore round differential privacy in traditional "dark pool" market venues, which promise privacy-preserving trade execution to mitigate front-running; privately submitted trade orders and trade execution are kept private by the trusted venue operator. We observe that dark pools satisfy neither classic nor correlated-output differential privacy; in markets with low trade activity, the adversary may trivially observe recurring, honest trading patterns, and anticipate and front-run future trades. In response, we present the first round differentially private market mechanisms that formally mitigate information leakage from all trading activity of a user. This is achieved with fuzzy order matching, inspired by the standard randomized response mechanism; however, this also introduces a liquidity mismatch as buy and sell orders are not guaranteed to execute pairwise, thereby weakening output correlation; this mismatch is compensated for by a round differentially private liquidity provider mechanism, which freezes a noisy amount of assets from the liquidity provider for the duration of a privacy epoch, but leaves trader balances unaffected. We propose oblivious algorithms for realizing our proposed market mechanisms with secure multi-party computation (MPC) and implement these in the Scale-Mamba Framework using Shamir Secret Sharing based MPC. We demonstrate practical, round differentially private trading with comparable throughput as prior work implementing (traditional) dark pool algorithms in MPC; our experiments demonstrate practicality for both traditional finance and decentralized finance settings.

Cite as

James Hsin-yu Chiang, Bernardo David, Mariana Gama, and Christian Janos Lebeda. Correlated-Output Differential Privacy and Applications to Dark Pools. In 5th Conference on Advances in Financial Technologies (AFT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 282, pp. 11:1-11:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chiang_et_al:LIPIcs.AFT.2023.11,
  author =	{Chiang, James Hsin-yu and David, Bernardo and Gama, Mariana and Lebeda, Christian Janos},
  title =	{{Correlated-Output Differential Privacy and Applications to Dark Pools}},
  booktitle =	{5th Conference on Advances in Financial Technologies (AFT 2023)},
  pages =	{11:1--11:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-303-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{282},
  editor =	{Bonneau, Joseph and Weinberg, S. Matthew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2023.11},
  URN =		{urn:nbn:de:0030-drops-192003},
  doi =		{10.4230/LIPIcs.AFT.2023.11},
  annote =	{Keywords: Differential Privacy, Secure Multi-party Computation, Dark Pools, Decentralized Finance}
}
Document
Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

Authors: Zhipeng Wang, Marko Cirkovic, Duc V. Le, William Knottenbelt, and Christian Cachin

Published in: LIPIcs, Volume 282, 5th Conference on Advances in Financial Technologies (AFT 2023)


Abstract
On-chain mixers, such as Tornado Cash (TC), have become a popular privacy solution for many non-privacy-preserving blockchain users. These mixers enable users to deposit a fixed amount of coins and withdraw them to another address, while effectively reducing the linkability between these addresses and securely obscuring their transaction history. However, the high cost of interacting with existing on-chain mixer smart contracts prohibits standard users from using the mixer, mainly due to the use of computationally expensive cryptographic primitives. For instance, the deposit cost of TC on Ethereum is approximately 1.1M gas (i.e., 66 USD in June 2023), which is 53× higher than issuing a base transfer transaction. In this work, we introduce the Merkle Pyramid Builder approach, to incrementally build the Merkle tree in an on-chain mixer and update the tree per batch of deposits, which can therefore decrease the overall cost of using the mixer. Our evaluation results highlight the effectiveness of this approach, showcasing a significant reduction of up to 7× in the amortized cost of depositing compared to state-of-the-art on-chain mixers. Importantly, these improvements are achieved without compromising users' privacy. Furthermore, we propose the utilization of verifiable computations to shift the responsibility of Merkle tree updates from on-chain smart contracts to off-chain clients, which can further reduce deposit costs. Additionally, our analysis demonstrates that our designs ensure fairness by distributing Merkle tree update costs among clients over time.

Cite as

Zhipeng Wang, Marko Cirkovic, Duc V. Le, William Knottenbelt, and Christian Cachin. Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers. In 5th Conference on Advances in Financial Technologies (AFT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 282, pp. 16:1-16:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{wang_et_al:LIPIcs.AFT.2023.16,
  author =	{Wang, Zhipeng and Cirkovic, Marko and Le, Duc V. and Knottenbelt, William and Cachin, Christian},
  title =	{{Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers}},
  booktitle =	{5th Conference on Advances in Financial Technologies (AFT 2023)},
  pages =	{16:1--16:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-303-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{282},
  editor =	{Bonneau, Joseph and Weinberg, S. Matthew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2023.16},
  URN =		{urn:nbn:de:0030-drops-192050},
  doi =		{10.4230/LIPIcs.AFT.2023.16},
  annote =	{Keywords: Privacy, Blockchain, Mixers, Merkle Tree}
}
Document
Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

Authors: Orestis Alpos, Christian Cachin, Simon Holmgaard Kamp, and Jesper Buus Nielsen

Published in: LIPIcs, Volume 282, 5th Conference on Advances in Financial Technologies (AFT 2023)


Abstract
We present simple and practical protocols for generating randomness as used by asynchronous total-order broadcast. The protocols are secure in a proof-of-stake setting with dynamically changing stake. They can be plugged into existing protocols for asynchronous total-order broadcast and will turn these into asynchronous total-order broadcast with dynamic stake. Our contribution relies on two important techniques. The paper "Random Oracles in Constantinople: Practical Asynchronous Byzantine Agreement using Cryptography" [Cachin, Kursawe, and Shoup, PODC 2000] has influenced the design of practical total-order broadcast through its use of threshold cryptography. However, it needs a setup protocol to be efficient. In a proof-of-stake setting with dynamic stake this setup would have to be continually recomputed, making the protocol impractical. The work "Asynchronous Byzantine Agreement with Subquadratic Communication" [Blum, Katz, Liu-Zhang, and Loss, TCC 2020] showed how to use an initial setup for broadcast to asymptotically efficiently generate sub-sequent setups. The protocol, however, resorted to fully homomorphic encryption and was therefore not practically efficient. We adopt their approach to the proof-of-stake setting with dynamic stake, apply it to the Constantinople paper, and remove the need for fully homomorphic encryption. This results in simple and practical proof-of-stake protocols.

Cite as

Orestis Alpos, Christian Cachin, Simon Holmgaard Kamp, and Jesper Buus Nielsen. Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast. In 5th Conference on Advances in Financial Technologies (AFT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 282, pp. 31:1-31:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{alpos_et_al:LIPIcs.AFT.2023.31,
  author =	{Alpos, Orestis and Cachin, Christian and Kamp, Simon Holmgaard and Nielsen, Jesper Buus},
  title =	{{Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast}},
  booktitle =	{5th Conference on Advances in Financial Technologies (AFT 2023)},
  pages =	{31:1--31:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-303-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{282},
  editor =	{Bonneau, Joseph and Weinberg, S. Matthew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2023.31},
  URN =		{urn:nbn:de:0030-drops-192203},
  doi =		{10.4230/LIPIcs.AFT.2023.31},
  annote =	{Keywords: Total-Order Broadcast, Atomic Broadcast, Proof of Stake, Random Beacon}
}
Document
Partially Preemptive Multi Skill/Mode Resource-Constrained Project Scheduling with Generalized Precedence Relations and Calendars

Authors: Guillaume Povéda, Nahum Alvarez, and Christian Artigues

Published in: LIPIcs, Volume 280, 29th International Conference on Principles and Practice of Constraint Programming (CP 2023)


Abstract
Multi skill resource-constrained project scheduling Problems (MS-RCPSP) have been object of studies from many years. Also, preemption is an important feature of real-life scheduling models. However, very little research has been investigated concerning MS-RCPSPs including preemption, and even less research moving out from academic benchmarks to real problem solving. In this paper we present a solution to those problems based on a hybrid method derived from large neighborhood search incorporating constraint programming components tailored to deal with complex scheduling constraints. We also present a constraint programming model adapted to preemption. The methods are implemented in a new open source python library allowing to easily reuse existing modeling languages and solvers. We evaluate the methods on an industrial case study from aircraft manufacturing including additional complicating constraints such as generalized precedence relations, resource calendars and partial preemption on which the standard CP Optimizer solver, even with the preemption-specific model, is unable to provide solutions in reasonable times. The large neighborhood search method is also able to find new best solutions on standard multi-skill project scheduling instances, performing better than a reference method from the literature.

Cite as

Guillaume Povéda, Nahum Alvarez, and Christian Artigues. Partially Preemptive Multi Skill/Mode Resource-Constrained Project Scheduling with Generalized Precedence Relations and Calendars. In 29th International Conference on Principles and Practice of Constraint Programming (CP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 280, pp. 31:1-31:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{poveda_et_al:LIPIcs.CP.2023.31,
  author =	{Pov\'{e}da, Guillaume and Alvarez, Nahum and Artigues, Christian},
  title =	{{Partially Preemptive Multi Skill/Mode Resource-Constrained Project Scheduling with Generalized Precedence Relations and Calendars}},
  booktitle =	{29th International Conference on Principles and Practice of Constraint Programming (CP 2023)},
  pages =	{31:1--31:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-300-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{280},
  editor =	{Yap, Roland H. C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.31},
  URN =		{urn:nbn:de:0030-drops-190689},
  doi =		{10.4230/LIPIcs.CP.2023.31},
  annote =	{Keywords: Large-scale scheduling problem, partial preemption, multi-skill, multi-mode, resource calendars, constraint programming, large neighborhood search}
}
Document
Map Reproducibility in Geoscientific Publications: An Exploratory Study

Authors: Eftychia Koukouraki and Christian Kray

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Reproducibility is a core element of the scientific method. In the Geosciences, the insights derived from geodata are frequently communicated through maps, and the computational methods to create these maps vary in their ease of reproduction. In this paper, we present the results from a study where we tried to reproduce the maps included in geoscientific publications. Following a systematic approach, we collected 27 candidate papers and in four cases, we were able to successfully reproduce the maps they contained. We report on the approach we applied, the issues we encountered and the insights we gained while attempting to reproduce the maps. In addition, we provide an initial set of criteria to assess the success of a map reproduction attempt. We also propose some guidelines for improving map reproducibility in geoscientific publications. Our work sheds a light on the current state of map reproducibility in geoscientific papers and can benefit researchers interested in publishing maps in a more reproducible way.

Cite as

Eftychia Koukouraki and Christian Kray. Map Reproducibility in Geoscientific Publications: An Exploratory Study. In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{koukouraki_et_al:LIPIcs.GIScience.2023.6,
  author =	{Koukouraki, Eftychia and Kray, Christian},
  title =	{{Map Reproducibility in Geoscientific Publications: An Exploratory Study}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{6:1--6:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.6},
  URN =		{urn:nbn:de:0030-drops-189015},
  doi =		{10.4230/LIPIcs.GIScience.2023.6},
  annote =	{Keywords: Reproducible Research, Reproduction Assessment, Map Making, Cartography}
}
Document
Short Paper
Betweenness Centrality in Spatial Networks: A Spatially Normalised Approach (Short Paper)

Authors: Christian Werner and Martin Loidl

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Centrality metrics are essential to network analysis. They reveal important morphological properties of networks, indicating e.g. node or edge importance. Applications are manifold, ranging from biology to transport planning. However, while being commonly applied in spatial contexts such as urban analytics, the implications of the spatial configuration of network elements on these metrics are widely neglected. As a consequence, a systematic bias is introduced into spatial network analyses. When applied to real-world problems, unintended side effects and wrong conclusions might be the result. In this paper, we assess the impact of node density on betweenness centrality. Furthermore, we propose a method for computing spatially normalised betweenness centrality. We apply it to a theoretical case as well as real-world transport networks. Results show that spatial normalisation mitigates the prevalent bias of node density.

Cite as

Christian Werner and Martin Loidl. Betweenness Centrality in Spatial Networks: A Spatially Normalised Approach (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 83:1-83:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{werner_et_al:LIPIcs.GIScience.2023.83,
  author =	{Werner, Christian and Loidl, Martin},
  title =	{{Betweenness Centrality in Spatial Networks: A Spatially Normalised Approach}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{83:1--83:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.83},
  URN =		{urn:nbn:de:0030-drops-189781},
  doi =		{10.4230/LIPIcs.GIScience.2023.83},
  annote =	{Keywords: spatial network analysis, edge betweenness centrality, flow estimation, SIBC, spatial interaction, spatial centrality, urban analytics}
}
Document
Integrating Line Planning for Construction Sites into Periodic Timetabling via Track Choice

Authors: Berenike Masing, Niels Lindner, and Christian Liebchen

Published in: OASIcs, Volume 115, 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)


Abstract
We consider maintenance sites for urban rail systems, where unavailable tracks typically require changes to the regular timetable, and often even to the line plan. In this paper, we present an integrated mixed-integer linear optimization model to compute an optimal line plan that makes best use of the available tracks, together with a periodic timetable, including its detailed routing on the tracks within the stations. The key component is a flexible, turn-sensitive event-activity network that allows to integrate line planning and train routing using a track choice extension of the Periodic Event Scheduling Problem (PESP). Major goals are to maintain as much of the regular service as possible, and to keep the necessary changes rather local. Moreover, we present computational results on real construction site scenarios on the S-Bahn Berlin network. We demonstrate that this integrated problem is indeed solvable on practically relevant instances.

Cite as

Berenike Masing, Niels Lindner, and Christian Liebchen. Integrating Line Planning for Construction Sites into Periodic Timetabling via Track Choice. In 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023). Open Access Series in Informatics (OASIcs), Volume 115, pp. 5:1-5:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{masing_et_al:OASIcs.ATMOS.2023.5,
  author =	{Masing, Berenike and Lindner, Niels and Liebchen, Christian},
  title =	{{Integrating Line Planning for Construction Sites into Periodic Timetabling via Track Choice}},
  booktitle =	{23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)},
  pages =	{5:1--5:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-302-7},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{115},
  editor =	{Frigioni, Daniele and Schiewe, Philine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2023.5},
  URN =		{urn:nbn:de:0030-drops-187669},
  doi =		{10.4230/OASIcs.ATMOS.2023.5},
  annote =	{Keywords: Periodic Timetabling, Line Planning, Track Choice, Mixed-Integer Programming, Construction Sites, Railway Rescheduling}
}
  • Refine by Author
  • 25 Komusiewicz, Christian
  • 19 Scheideler, Christian
  • 19 Schulz, Christian
  • 18 Cachin, Christian
  • 17 Scheffer, Christian
  • Show More...

  • Refine by Classification
  • 41 Theory of computation → Distributed algorithms
  • 26 Mathematics of computing → Graph algorithms
  • 23 Theory of computation → Graph algorithms analysis
  • 17 Theory of computation → Parameterized complexity and exact algorithms
  • 16 Theory of computation → Computational geometry
  • Show More...

  • Refine by Keyword
  • 13 approximation algorithms
  • 12 approximation
  • 11 consensus
  • 9 kernelization
  • 8 distributed algorithms
  • Show More...

  • Refine by Type
  • 701 document

  • Refine by Publication Year
  • 120 2017
  • 114 2022
  • 59 2016
  • 59 2019
  • 51 2007
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail