77 Search Results for "F�rster, Henry"


Document
Software Architecture and Machine Learning (Dagstuhl Seminar 23302)

Authors: Grace A. Lewis, Henry Muccini, Ipek Ozkaya, Karthik Vaidhyanathan, Roland Weiss, and Liming Zhu

Published in: Dagstuhl Reports, Volume 13, Issue 7 (2024)


Abstract
This report documents the program and outcomes of Dagstuhl Seminar 23302, "Software Architecture and Machine Learning". We summarize the goals and format of the seminar, results from the breakout groups, key definitions relevant to machine learning-enabled systems that were discussed, and the research roadmap that emerged from the discussions during the seminar. The report also includes the abstracts of the talks presented at the seminar and summaries of open discussions.

Cite as

Grace A. Lewis, Henry Muccini, Ipek Ozkaya, Karthik Vaidhyanathan, Roland Weiss, and Liming Zhu. Software Architecture and Machine Learning (Dagstuhl Seminar 23302). In Dagstuhl Reports, Volume 13, Issue 7, pp. 166-188, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{lewis_et_al:DagRep.13.7.166,
  author =	{Lewis, Grace A. and Muccini, Henry and Ozkaya, Ipek and Vaidhyanathan, Karthik and Weiss, Roland and Zhu, Liming},
  title =	{{Software Architecture and Machine Learning (Dagstuhl Seminar 23302)}},
  pages =	{166--188},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{7},
  editor =	{Lewis, Grace A. and Muccini, Henry and Vaidhyanathan, Karthik and Weiss, Roland and Zhu, Liming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.7.166},
  URN =		{urn:nbn:de:0030-drops-197793},
  doi =		{10.4230/DagRep.13.7.166},
  annote =	{Keywords: Architecting ML-enabled Systems, ML for Software Architecture, Software Architecture for ML, Machine Learning, Software Architecture, Software Engineering}
}
Document
Pseudorandom Strings from Pseudorandom Quantum States

Authors: Prabhanjan Ananth, Yao-Ting Lin, and Henry Yuen

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We study the relationship between notions of pseudorandomness in the quantum and classical worlds. Pseudorandom quantum state generator (PRSG), a pseudorandomness notion in the quantum world, is an efficient circuit that produces states that are computationally indistinguishable from Haar random states. PRSGs have found applications in quantum gravity, quantum machine learning, quantum complexity theory, and quantum cryptography. Pseudorandom generators, on the other hand, a pseudorandomness notion in the classical world, is ubiquitous to theoretical computer science. While some separation results were known between PRSGs, for some parameter regimes, and PRGs, their relationship has not been completely understood. In this work, we show that a natural variant of pseudorandom generators called quantum pseudorandom generators (QPRGs) can be based on the existence of logarithmic output length PRSGs. Our result along with the previous separations gives a better picture regarding the relationship between the two notions. We also study the relationship between other notions, namely, pseudorandom function-like state generators and pseudorandom functions. We provide evidence that QPRGs can be as useful as PRGs by providing cryptographic applications of QPRGs such as commitments and encryption schemes. Our primary technical contribution is a method for pseudodeterministically extracting uniformly random strings from Haar-random states.

Cite as

Prabhanjan Ananth, Yao-Ting Lin, and Henry Yuen. Pseudorandom Strings from Pseudorandom Quantum States. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 6:1-6:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ananth_et_al:LIPIcs.ITCS.2024.6,
  author =	{Ananth, Prabhanjan and Lin, Yao-Ting and Yuen, Henry},
  title =	{{Pseudorandom Strings from Pseudorandom Quantum States}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{6:1--6:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.6},
  URN =		{urn:nbn:de:0030-drops-195348},
  doi =		{10.4230/LIPIcs.ITCS.2024.6},
  annote =	{Keywords: Quantum Cryptography}
}
Document
Spanning Adjacency Oracles in Sublinear Time

Authors: Greg Bodwin and Henry Fleischmann

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Suppose we are given an n-node, m-edge input graph G, and the goal is to compute a spanning subgraph H on O(n) edges. This can be achieved in linear O(m + n) time via breadth-first search. But can we hope for sublinear runtime in some range of parameters - for example, perhaps O(n^{1.9}) worst-case runtime, even when the input graph has n² edges? If the goal is to return H as an adjacency list, there are simple lower bounds showing that Ω(m + n) runtime is necessary. If the goal is to return H as an adjacency matrix, then we need Ω(n²) time just to write down the entries of the output matrix. However, we show that neither of these lower bounds still apply if instead the goal is to return H as an implicit adjacency matrix, which we call an adjacency oracle. An adjacency oracle is a data structure that gives a user the illusion that an adjacency matrix has been computed: it accepts edge queries (u, v), and it returns in near-constant time a bit indicating whether or not (u, v) ∈ E(H). Our main result is that, for any 0 < ε < 1, one can construct an adjacency oracle for a spanning subgraph on at most (1+ε)n edges, in Õ(n ε^{-1}) time (hence sublinear time on input graphs with m ≫ n edges), and that this construction time is near-optimal. Additional results include constructions of adjacency oracles for k-connectivity certificates and spanners, which are similarly sublinear on dense-enough input graphs. Our adjacency oracles are closely related to Local Computation Algorithms (LCAs) for graph sparsifiers; they can be viewed as LCAs with some computation moved to a preprocessing step, in order to speed up queries. Our oracles imply the first LCAs for computing sparse spanning subgraphs of general input graphs in Õ(n) query time, which works by constructing our adjacency oracle, querying it once, and then throwing the rest of the oracle away. This addresses an open problem of Rubinfeld [CSR '17].

Cite as

Greg Bodwin and Henry Fleischmann. Spanning Adjacency Oracles in Sublinear Time. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 19:1-19:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bodwin_et_al:LIPIcs.ITCS.2024.19,
  author =	{Bodwin, Greg and Fleischmann, Henry},
  title =	{{Spanning Adjacency Oracles in Sublinear Time}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{19:1--19:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.19},
  URN =		{urn:nbn:de:0030-drops-195475},
  doi =		{10.4230/LIPIcs.ITCS.2024.19},
  annote =	{Keywords: Graph algorithms, Sublinear algorithms, Data structures, Graph theory}
}
Document
Parity vs. AC0 with Simple Quantum Preprocessing

Authors: Joseph Slote

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
A recent line of work [Bravyi et al., 2018; Watts et al., 2019; Grier and Schaeffer, 2020; Bravyi et al., 2020; Watts and Parham, 2023] has shown the unconditional advantage of constant-depth quantum computation, or QNC⁰, over NC⁰, AC⁰, and related models of classical computation. Problems exhibiting this advantage include search and sampling tasks related to the parity function, and it is natural to ask whether QNC⁰ can be used to help compute parity itself. Namely, we study AC⁰∘QNC⁰ - a hybrid circuit model where AC⁰ operates on measurement outcomes of a QNC⁰ circuit - and we ask whether Par ∈ AC⁰∘QNC⁰. We believe the answer is negative. In fact, we conjecture AC⁰∘QNC⁰ cannot even achieve Ω(1) correlation with parity. As evidence for this conjecture, we prove: - When the QNC⁰ circuit is ancilla-free, this model can achieve only negligible correlation with parity, even when AC⁰ is replaced with any function having LMN-like decay in its Fourier spectrum. - For the general (non-ancilla-free) case, we show via a connection to nonlocal games that the conjecture holds for any class of postprocessing functions that has approximate degree o(n) and is closed under restrictions. Moreover, this is true even when the QNC⁰ circuit is given arbitrary quantum advice. By known results [Bun et al., 2019], this confirms the conjecture for linear-size AC⁰ circuits. - Another approach to proving the conjecture is to show a switching lemma for AC⁰∘QNC⁰. Towards this goal, we study the effect of quantum preprocessing on the decision tree complexity of Boolean functions. We find that from the point of view of decision tree complexity, nonlocal channels are no better than randomness: a Boolean function f precomposed with an n-party nonlocal channel is together equal to a randomized decision tree with worst-case depth at most DT_depth[f]. Taken together, our results suggest that while QNC⁰ is surprisingly powerful for search and sampling tasks, that power is "locked away" in the global correlations of its output, inaccessible to simple classical computation for solving decision problems.

Cite as

Joseph Slote. Parity vs. AC0 with Simple Quantum Preprocessing. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 92:1-92:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{slote:LIPIcs.ITCS.2024.92,
  author =	{Slote, Joseph},
  title =	{{Parity vs. AC0 with Simple Quantum Preprocessing}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{92:1--92:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.92},
  URN =		{urn:nbn:de:0030-drops-196209},
  doi =		{10.4230/LIPIcs.ITCS.2024.92},
  annote =	{Keywords: QNC0, AC0, Nonlocal games, k-wise indistinguishability, approximate degree, switching lemma, Fourier concentration}
}
Document
Reinforcement Planning for Effective ε-Optimal Policies in Dense Time with Discontinuities

Authors: Léo Henry, Blaise Genest, and Alexandre Drewery

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
Lately, the model of (Decision) Stochastic Timed Automata (DSTA) has been proposed, to model those Cyber Physical Systems displaying dense time (physical part), discrete actions and discontinuities such as timeouts (cyber part). The state of the art results on controlling DSTAs are however not ideal: in the case of infinite horizon, optimal controllers do not exist, while for timed bounded behaviors, we do not know how to build such controllers, even ε-optimal ones. In this paper, we develop a theory of Reinforcement Planning in the setting of DSTAs, for discounted infinite horizon objectives. We show that optimal controllers do exist in general. Further, for DSTAs with 1 clock (which already generalize Continuous Time MDPs with e.g. timeouts), we provide an effective procedure to compute ε-optimal controllers. It is worth noting that we do not rely on the discretization of the time space, but consider symbolic representations instead. Evaluation on a DSTA shows that this method can be more efficient. Last, we show on a counterexample that this is the furthest this construction can go, as it cannot be extended to 2 or more clocks.

Cite as

Léo Henry, Blaise Genest, and Alexandre Drewery. Reinforcement Planning for Effective ε-Optimal Policies in Dense Time with Discontinuities. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{henry_et_al:LIPIcs.FSTTCS.2023.13,
  author =	{Henry, L\'{e}o and Genest, Blaise and Drewery, Alexandre},
  title =	{{Reinforcement Planning for Effective \epsilon-Optimal Policies in Dense Time with Discontinuities}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{13:1--13:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.13},
  URN =		{urn:nbn:de:0030-drops-193866},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.13},
  annote =	{Keywords: reinforcement planning, timed automata, planning}
}
Document
Acyclic Petri and Workflow Nets with Resets

Authors: Dmitry Chistikov, Wojciech Czerwiński, Piotr Hofman, Filip Mazowiecki, and Henry Sinclair-Banks

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
In this paper we propose two new subclasses of Petri nets with resets, for which the reachability and coverability problems become tractable. Namely, we add an acyclicity condition that only applies to the consumptions and productions, not the resets. The first class is acyclic Petri nets with resets, and we show that coverability is PSPACE-complete for them. This contrasts the known Ackermann-hardness for coverability in (not necessarily acyclic) Petri nets with resets. We prove that the reachability problem remains undecidable for acyclic Petri nets with resets. The second class concerns workflow nets, a practically motivated and natural subclass of Petri nets. Here, we show that both coverability and reachability in acyclic workflow nets with resets are PSPACE-complete. Without the acyclicity condition, reachability and coverability in workflow nets with resets are known to be equally hard as for Petri nets with resets, that being Ackermann-hard and undecidable, respectively.

Cite as

Dmitry Chistikov, Wojciech Czerwiński, Piotr Hofman, Filip Mazowiecki, and Henry Sinclair-Banks. Acyclic Petri and Workflow Nets with Resets. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chistikov_et_al:LIPIcs.FSTTCS.2023.16,
  author =	{Chistikov, Dmitry and Czerwi\'{n}ski, Wojciech and Hofman, Piotr and Mazowiecki, Filip and Sinclair-Banks, Henry},
  title =	{{Acyclic Petri and Workflow Nets with Resets}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{16:1--16:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.16},
  URN =		{urn:nbn:de:0030-drops-193892},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.16},
  annote =	{Keywords: Petri nets, Workflow Nets, Resets, Acyclic, Reachability, Coverability}
}
Document
Bounded Simultaneous Messages

Authors: Andrej Bogdanov, Krishnamoorthy Dinesh, Yuval Filmus, Yuval Ishai, Avi Kaplan, and Sruthi Sekar

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
We consider the following question of bounded simultaneous messages (BSM) protocols: Can computationally unbounded Alice and Bob evaluate a function f(x,y) of their inputs by sending polynomial-size messages to a computationally bounded Carol? The special case where f is the mod-2 inner-product function and Carol is bounded to AC⁰ has been studied in previous works. The general question can be broadly motivated by applications in which distributed computation is more costly than local computation. In this work, we initiate a more systematic study of the BSM model, with different functions f and computational bounds on Carol. In particular, we give evidence against the existence of BSM protocols with polynomial-size Carol for naturally distributed variants of NP-complete languages.

Cite as

Andrej Bogdanov, Krishnamoorthy Dinesh, Yuval Filmus, Yuval Ishai, Avi Kaplan, and Sruthi Sekar. Bounded Simultaneous Messages. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 23:1-23:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bogdanov_et_al:LIPIcs.FSTTCS.2023.23,
  author =	{Bogdanov, Andrej and Dinesh, Krishnamoorthy and Filmus, Yuval and Ishai, Yuval and Kaplan, Avi and Sekar, Sruthi},
  title =	{{Bounded Simultaneous Messages}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{23:1--23:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.23},
  URN =		{urn:nbn:de:0030-drops-193961},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.23},
  annote =	{Keywords: Simultaneous Messages, Instance Hiding, Algebraic degree, Preprocessing, Lower Bounds}
}
Document
Benchmarking Regression Models Under Spatial Heterogeneity

Authors: Nina Wiedemann, Henry Martin, and René Westerholt

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Machine learning methods have recently found much application on spatial data, for example in weather forecasting, traffic prediction, and soil analysis. At the same time, methods from spatial statistics were developed over the past decades to explicitly account for spatial structuring in analytical and inference tasks. In the light of this duality of having both types of methods available, we explore the following question: Under what circumstances are local, spatially-explicit models preferable over machine learning models that do not incorporate spatial structure explicitly in their specification? Local models are typically used to capture spatial non-stationarity. Thus, we study the effect of strength and type of spatial heterogeneity, which may originate from non-stationarity of a process itself or from heterogeneous noise, on the performance of different linear and non-linear, local and global machine learning and regression models. The results suggest that it is necessary to assess the performance of linear local models on an independent hold-out dataset, since models may overfit under certain conditions. We further show that local models are advantageous in settings with small sample size and high degrees of spatial heterogeneity. Our findings allow deriving model selection criteria, which are validated in benchmarking experiments on five well-known spatial datasets.

Cite as

Nina Wiedemann, Henry Martin, and René Westerholt. Benchmarking Regression Models Under Spatial Heterogeneity. In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{wiedemann_et_al:LIPIcs.GIScience.2023.11,
  author =	{Wiedemann, Nina and Martin, Henry and Westerholt, Ren\'{e}},
  title =	{{Benchmarking Regression Models Under Spatial Heterogeneity}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{11:1--11:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.11},
  URN =		{urn:nbn:de:0030-drops-189064},
  doi =		{10.4230/LIPIcs.GIScience.2023.11},
  annote =	{Keywords: spatial machine learning, spatial non-stationarity, Geographically Weighted Regression, local models, geostatistics}
}
Document
A Tight Competitive Ratio for Online Submodular Welfare Maximization

Authors: Amit Ganz, Pranav Nuti, and Roy Schwartz

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
In this paper we consider the online Submodular Welfare (SW) problem. In this problem we are given n bidders each equipped with a general non-negative (not necessarily monotone) submodular utility and m items that arrive online. The goal is to assign each item, once it arrives, to a bidder or discard it, while maximizing the sum of utilities. When an adversary determines the items' arrival order we present a simple randomized algorithm that achieves a tight competitive ratio of 1/4. The algorithm is a specialization of an algorithm due to [Harshaw-Kazemi-Feldman-Karbasi MOR`22], who presented the previously best known competitive ratio of 3-2√2≈ 0.171573 to the problem. When the items' arrival order is uniformly random, we present a competitive ratio of ≈ 0.27493, improving the previously known 1/4 guarantee. Our approach for the latter result is based on a better analysis of the (offline) Residual Random Greedy (RRG) algorithm of [Buchbinder-Feldman-Naor-Schwartz SODA`14], which we believe might be of independent interest.

Cite as

Amit Ganz, Pranav Nuti, and Roy Schwartz. A Tight Competitive Ratio for Online Submodular Welfare Maximization. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 52:1-52:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ganz_et_al:LIPIcs.ESA.2023.52,
  author =	{Ganz, Amit and Nuti, Pranav and Schwartz, Roy},
  title =	{{A Tight Competitive Ratio for Online Submodular Welfare Maximization}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{52:1--52:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.52},
  URN =		{urn:nbn:de:0030-drops-187052},
  doi =		{10.4230/LIPIcs.ESA.2023.52},
  annote =	{Keywords: Online Algorithms, Submodular Maximization, Welfare Maximization, Approximation Algorithms}
}
Document
An Improved Approximation Algorithm for the Max-3-Section Problem

Authors: Dor Katzelnick, Aditya Pillai, Roy Schwartz, and Mohit Singh

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We consider the Max--Section problem, where we are given an undirected graph G=(V,E)equipped with non-negative edge weights w: E → R_+ and the goal is to find a partition of V into three equisized parts while maximizing the total weight of edges crossing between different parts. Max-3-Section is closely related to other well-studied graph partitioning problems, e.g., Max-Cut, Max-3-Cut, and Max-Bisection. We present a polynomial time algorithm achieving an approximation of 0.795, that improves upon the previous best known approximation of 0.673. The requirement of multiple parts that have equal sizes renders Max-3-Section much harder to cope with compared to, e.g., Max-Bisection. We show a new algorithm that combines the existing approach of Lassere hierarchy along with a random cut strategy that suffices to give our result.

Cite as

Dor Katzelnick, Aditya Pillai, Roy Schwartz, and Mohit Singh. An Improved Approximation Algorithm for the Max-3-Section Problem. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 69:1-69:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{katzelnick_et_al:LIPIcs.ESA.2023.69,
  author =	{Katzelnick, Dor and Pillai, Aditya and Schwartz, Roy and Singh, Mohit},
  title =	{{An Improved Approximation Algorithm for the Max-3-Section Problem}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{69:1--69:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.69},
  URN =		{urn:nbn:de:0030-drops-187229},
  doi =		{10.4230/LIPIcs.ESA.2023.69},
  annote =	{Keywords: Approximation Algorithms, Semidefinite Programming, Max-Cut, Max-Bisection}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Coverability in VASS Revisited: Improving Rackoff’s Bound to Obtain Conditional Optimality

Authors: Marvin Künnemann, Filip Mazowiecki, Lia Schütze, Henry Sinclair-Banks, and Karol Węgrzycki

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Seminal results establish that the coverability problem for Vector Addition Systems with States (VASS) is in EXPSPACE (Rackoff, '78) and is EXPSPACE-hard already under unary encodings (Lipton, '76). More precisely, Rosier and Yen later utilise Rackoff’s bounding technique to show that if coverability holds then there is a run of length at most n^{2^𝒪(d log d)}, where d is the dimension and n is the size of the given unary VASS. Earlier, Lipton showed that there exist instances of coverability in d-dimensional unary VASS that are only witnessed by runs of length at least n^{2^Ω(d)}. Our first result closes this gap. We improve the upper bound by removing the twice-exponentiated log(d) factor, thus matching Lipton’s lower bound. This closes the corresponding gap for the exact space required to decide coverability. This also yields a deterministic n^{2^𝒪(d)}-time algorithm for coverability. Our second result is a matching lower bound, that there does not exist a deterministic n^{2^o(d)}-time algorithm, conditioned upon the Exponential Time Hypothesis. When analysing coverability, a standard proof technique is to consider VASS with bounded counters. Bounded VASS make for an interesting and popular model due to strong connections with timed automata. Withal, we study a natural setting where the counter bound is linear in the size of the VASS. Here the trivial exhaustive search algorithm runs in 𝒪(n^{d+1})-time. We give evidence to this being near-optimal. We prove that in dimension one this trivial algorithm is conditionally optimal, by showing that n^{2-o(1)}-time is required under the k-cycle hypothesis. In general fixed dimension d, we show that n^{d-2-o(1)}-time is required under the 3-uniform hyperclique hypothesis.

Cite as

Marvin Künnemann, Filip Mazowiecki, Lia Schütze, Henry Sinclair-Banks, and Karol Węgrzycki. Coverability in VASS Revisited: Improving Rackoff’s Bound to Obtain Conditional Optimality. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 131:1-131:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kunnemann_et_al:LIPIcs.ICALP.2023.131,
  author =	{K\"{u}nnemann, Marvin and Mazowiecki, Filip and Sch\"{u}tze, Lia and Sinclair-Banks, Henry and W\k{e}grzycki, Karol},
  title =	{{Coverability in VASS Revisited: Improving Rackoff’s Bound to Obtain Conditional Optimality}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{131:1--131:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.131},
  URN =		{urn:nbn:de:0030-drops-181834},
  doi =		{10.4230/LIPIcs.ICALP.2023.131},
  annote =	{Keywords: Vector Addition System, Coverability, Reachability, Fine-Grained Complexity, Exponential Time Hypothesis, k-Cycle Hypothesis, Hyperclique Hypothesis}
}
Document
Linear Size Universal Point Sets for Classes of Planar Graphs

Authors: Stefan Felsner, Hendrik Schrezenmaier, Felix Schröder, and Raphael Steiner

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
A finite set P of points in the plane is n-universal with respect to a class 𝒞 of planar graphs if every n-vertex graph in 𝒞 admits a crossing-free straight-line drawing with vertices at points of P. For the class of all planar graphs the best known upper bound on the size of a universal point set is quadratic and the best known lower bound is linear in n. Some classes of planar graphs are known to admit universal point sets of near linear size, however, there are no truly linear bounds for interesting classes beyond outerplanar graphs. In this paper, we show that there is a universal point set of size 2n-2 for the class of bipartite planar graphs with n vertices. The same point set is also universal for the class of n-vertex planar graphs of maximum degree 3. The point set used for the results is what we call an exploding double chain, and we prove that this point set allows planar straight-line embeddings of many more planar graphs, namely of all subgraphs of planar graphs admitting a one-sided Hamiltonian cycle. The result for bipartite graphs also implies that every n-vertex plane graph has a 1-bend drawing all whose bends and vertices are contained in a specific point set of size 4n-6, this improves a bound of 6n-10 for the same problem by Löffler and Tóth.

Cite as

Stefan Felsner, Hendrik Schrezenmaier, Felix Schröder, and Raphael Steiner. Linear Size Universal Point Sets for Classes of Planar Graphs. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{felsner_et_al:LIPIcs.SoCG.2023.31,
  author =	{Felsner, Stefan and Schrezenmaier, Hendrik and Schr\"{o}der, Felix and Steiner, Raphael},
  title =	{{Linear Size Universal Point Sets for Classes of Planar Graphs}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.31},
  URN =		{urn:nbn:de:0030-drops-178814},
  doi =		{10.4230/LIPIcs.SoCG.2023.31},
  annote =	{Keywords: Graph drawing, Universal point set, One-sided Hamiltonian, 2-page book embedding, Separating decomposition, Quadrangulation, 2-tree, Subcubic planar graph}
}
Document
Matrix Multiplication via Matrix Groups

Authors: Jonah Blasiak, Henry Cohn, Joshua A. Grochow, Kevin Pratt, and Chris Umans

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In 2003, Cohn and Umans proposed a group-theoretic approach to bounding the exponent of matrix multiplication. Previous work within this approach ruled out certain families of groups as a route to obtaining ω = 2, while other families of groups remain potentially viable. In this paper we turn our attention to matrix groups, whose usefulness within this framework was relatively unexplored. We first show that groups of Lie type cannot prove ω = 2 within the group-theoretic approach. This is based on a representation-theoretic argument that identifies the second-smallest dimension of an irreducible representation of a group as a key parameter that determines its viability in this framework. Our proof builds on Gowers' result concerning product-free sets in quasirandom groups. We then give another barrier that rules out certain natural matrix group constructions that make use of subgroups that are far from being self-normalizing. Our barrier results leave open several natural paths to obtain ω = 2 via matrix groups. To explore these routes we propose working in the continuous setting of Lie groups, in which we develop an analogous theory. Obtaining the analogue of ω = 2 in this potentially easier setting is a key challenge that represents an intermediate goal short of actually proving ω = 2. We give two constructions in the continuous setting, each of which evades one of our two barriers.

Cite as

Jonah Blasiak, Henry Cohn, Joshua A. Grochow, Kevin Pratt, and Chris Umans. Matrix Multiplication via Matrix Groups. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{blasiak_et_al:LIPIcs.ITCS.2023.19,
  author =	{Blasiak, Jonah and Cohn, Henry and Grochow, Joshua A. and Pratt, Kevin and Umans, Chris},
  title =	{{Matrix Multiplication via Matrix Groups}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.19},
  URN =		{urn:nbn:de:0030-drops-175226},
  doi =		{10.4230/LIPIcs.ITCS.2023.19},
  annote =	{Keywords: Fast matrix multiplication, representation theory, matrix groups}
}
Document
On the Computational Hardness Needed for Quantum Cryptography

Authors: Zvika Brakerski, Ran Canetti, and Luowen Qian

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In the classical model of computation, it is well established that one-way functions (OWF) are minimal for computational cryptography: They are essential for almost any cryptographic application that cannot be realized with respect to computationally unbounded adversaries. In the quantum setting, however, OWFs appear not to be essential (Kretschmer 2021; Ananth et al., Morimae and Yamakawa 2022), and the question of whether such a minimal primitive exists remains open. We consider EFI pairs - efficiently samplable, statistically far but computationally indistinguishable pairs of (mixed) quantum states. Building on the work of Yan (2022), which shows equivalence between EFI pairs and statistical commitment schemes, we show that EFI pairs are necessary for a large class of quantum-cryptographic applications. Specifically, we construct EFI pairs from minimalistic versions of commitments schemes, oblivious transfer, and general secure multiparty computation, as well as from QCZK proofs from essentially any non-trivial language. We also construct quantum computational zero knowledge (QCZK) proofs for all of QIP from any EFI pair. This suggests that, for much of quantum cryptography, EFI pairs play a similar role to that played by OWFs in the classical setting: they are simple to describe, essential, and also serve as a linchpin for demonstrating equivalence between primitives.

Cite as

Zvika Brakerski, Ran Canetti, and Luowen Qian. On the Computational Hardness Needed for Quantum Cryptography. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 24:1-24:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{brakerski_et_al:LIPIcs.ITCS.2023.24,
  author =	{Brakerski, Zvika and Canetti, Ran and Qian, Luowen},
  title =	{{On the Computational Hardness Needed for Quantum Cryptography}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{24:1--24:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.24},
  URN =		{urn:nbn:de:0030-drops-175278},
  doi =		{10.4230/LIPIcs.ITCS.2023.24},
  annote =	{Keywords: quantum cryptography, efi, commitment scheme, oblivious transfer, zero knowledge, secure multiparty computation}
}
Document
Unitary Property Testing Lower Bounds by Polynomials

Authors: Adrian She and Henry Yuen

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We study unitary property testing, where a quantum algorithm is given query access to a black-box unitary and has to decide whether it satisfies some property. In addition to containing the standard quantum query complexity model (where the unitary encodes a binary string) as a special case, this model contains "inherently quantum" problems that have no classical analogue. Characterizing the query complexity of these problems requires new algorithmic techniques and lower bound methods. Our main contribution is a generalized polynomial method for unitary property testing problems. By leveraging connections with invariant theory, we apply this method to obtain lower bounds on problems such as determining recurrence times of unitaries, approximating the dimension of a marked subspace, and approximating the entanglement entropy of a marked state. We also present a unitary property testing-based approach towards an oracle separation between QMA and QMA(2), a long standing question in quantum complexity theory.

Cite as

Adrian She and Henry Yuen. Unitary Property Testing Lower Bounds by Polynomials. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 96:1-96:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{she_et_al:LIPIcs.ITCS.2023.96,
  author =	{She, Adrian and Yuen, Henry},
  title =	{{Unitary Property Testing Lower Bounds by Polynomials}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{96:1--96:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.96},
  URN =		{urn:nbn:de:0030-drops-175995},
  doi =		{10.4230/LIPIcs.ITCS.2023.96},
  annote =	{Keywords: Quantum query complexity, polynomial method, unitary property testing, quantum proofs, invariant theory, quantum recurrence time, entanglement entropy, BQP, QMA, QMA(2)}
}
  • Refine by Author
  • 13 Yuen, Henry
  • 5 Muccini, Henry
  • 3 Förster, Henry
  • 3 Henry Riche, Nathalie
  • 3 Kautz, Henry
  • Show More...

  • Refine by Classification
  • 8 Theory of computation → Quantum complexity theory
  • 4 Theory of computation → Circuit complexity
  • 4 Theory of computation → Quantum computation theory
  • 3 Mathematics of computing → Graphs and surfaces
  • 3 Theory of computation → Computational complexity and cryptography
  • Show More...

  • Refine by Keyword
  • 3 Approximation Algorithms
  • 2 Code-based testing
  • 2 Coverability
  • 2 Nonlocal games
  • 2 Parallel repetition
  • Show More...

  • Refine by Type
  • 77 document

  • Refine by Publication Year
  • 11 2023
  • 9 2010
  • 9 2022
  • 8 2020
  • 6 2016
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail