118 Search Results for "Fekete, S�ndor"


Document
Algorithmic Foundations of Programmable Matter (Dagstuhl Seminar 23091)

Authors: Aaron Becker, Sándor Fekete, Irina Kostitsyna, Matthew J. Patitz, Damien Woods, and Ioannis Chatzigiannakis

Published in: Dagstuhl Reports, Volume 13, Issue 2 (2023)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23091, "Algorithmic Foundations of Programmable Matter", a new and emerging field that combines theoretical work on algorithms with a wide spectrum of practical applications that reach all the way from small-scale embedded systems to cyber-physical structures at nano-scale. The aim of this seminar was to bring together researchers from computational geometry, distributed computing, DNA computing, and swarm robotics who have worked on programmable matter to inform one another about the newest developments in each area and to discuss future models, approaches, and directions for new research. Similar to the first two Dagstuhl Seminars on programmable matter (16271 and 18331), we did focus on some basic problems, but also considered new problems that were now within reach to be studied.

Cite as

Aaron Becker, Sándor Fekete, Irina Kostitsyna, Matthew J. Patitz, Damien Woods, and Ioannis Chatzigiannakis. Algorithmic Foundations of Programmable Matter (Dagstuhl Seminar 23091). In Dagstuhl Reports, Volume 13, Issue 2, pp. 183-198, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{becker_et_al:DagRep.13.2.183,
  author =	{Becker, Aaron and Fekete, S\'{a}ndor and Kostitsyna, Irina and Patitz, Matthew J. and Woods, Damien and Chatzigiannakis, Ioannis},
  title =	{{Algorithmic Foundations of Programmable Matter (Dagstuhl Seminar 23091)}},
  pages =	{183--198},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2023},
  volume =	{13},
  number =	{2},
  editor =	{Becker, Aaron and Fekete, S\'{a}ndor and Kostitsyna, Irina and Patitz, Matthew J. and Woods, Damien and Chatzigiannakis, Ioannis},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.13.2.183},
  URN =		{urn:nbn:de:0030-drops-191848},
  doi =		{10.4230/DagRep.13.2.183},
  annote =	{Keywords: computational geometry, distributed algorithms, DNA computing, programmable matter, swarm robotics}
}
Document
The Lawn Mowing Problem: From Algebra to Algorithms

Authors: Sándor P. Fekete, Dominik Krupke, Michael Perk, Christian Rieck, and Christian Scheffer

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
For a given polygonal region P, the Lawn Mowing Problem (LMP) asks for a shortest tour T that gets within Euclidean distance 1/2 of every point in P; this is equivalent to computing a shortest tour for a unit-diameter cutter C that covers all of P. As a generalization of the Traveling Salesman Problem, the LMP is NP-hard; unlike the discrete TSP, however, the LMP has defied efforts to achieve exact solutions, due to its combination of combinatorial complexity with continuous geometry. We provide a number of new contributions that provide insights into the involved difficulties, as well as positive results that enable both theoretical and practical progress. (1) We show that the LMP is algebraically hard: it is not solvable by radicals over the field of rationals, even for the simple case in which P is a 2×2 square. This implies that it is impossible to compute exact optimal solutions under models of computation that rely on elementary arithmetic operations and the extraction of kth roots, and explains the perceived practical difficulty. (2) We exploit this algebraic analysis for the natural class of polygons with axis-parallel edges and integer vertices (i.e., polyominoes), highlighting the relevance of turn-cost minimization for Lawn Mowing tours, and leading to a general construction method for feasible tours. (3) We show that this construction method achieves theoretical worst-case guarantees that improve previous approximation factors for polyominoes. (4) We demonstrate the practical usefulness beyond polyominoes by performing an extensive practical study on a spectrum of more general benchmark polygons: We obtain solutions that are better than the previous best values by Fekete et al., for instance sizes up to 20 times larger.

Cite as

Sándor P. Fekete, Dominik Krupke, Michael Perk, Christian Rieck, and Christian Scheffer. The Lawn Mowing Problem: From Algebra to Algorithms. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 45:1-45:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.ESA.2023.45,
  author =	{Fekete, S\'{a}ndor P. and Krupke, Dominik and Perk, Michael and Rieck, Christian and Scheffer, Christian},
  title =	{{The Lawn Mowing Problem: From Algebra to Algorithms}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{45:1--45:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.45},
  URN =		{urn:nbn:de:0030-drops-186985},
  doi =		{10.4230/LIPIcs.ESA.2023.45},
  annote =	{Keywords: Geometric optimization, covering problems, tour problems, lawn mowing, algebraic hardness, approximation algorithms, algorithm engineering}
}
Document
Efficiently Reconfiguring a Connected Swarm of Labeled Robots

Authors: Sándor P. Fekete, Peter Kramer, Christian Rieck, Christian Scheffer, and Arne Schmidt

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
When considering motion planning for a swarm of n labeled robots, we need to rearrange a given start configuration into a desired target configuration via a sequence of parallel, continuous, collision-free robot motions. The objective is to reach the new configuration in a minimum amount of time; an important constraint is to keep the swarm connected at all times. Problems of this type have been considered before, with recent notable results achieving constant stretch for not necessarily connected reconfiguration: If mapping the start configuration to the target configuration requires a maximum Manhattan distance of d, the total duration of an overall schedule can be bounded to 𝒪(d), which is optimal up to constant factors. However, constant stretch could only be achieved if disconnected reconfiguration is allowed, or for scaled configurations (which arise by increasing all dimensions of a given object by the same multiplicative factor) of unlabeled robots. We resolve these major open problems by (1) establishing a lower bound of Ω(√n) for connected, labeled reconfiguration and, most importantly, by (2) proving that for scaled arrangements, constant stretch for connected reconfiguration can be achieved. In addition, we show that (3) it is NP-hard to decide whether a makespan of 2 can be achieved, while it is possible to check in polynomial time whether a makespan of 1 can be achieved.

Cite as

Sándor P. Fekete, Peter Kramer, Christian Rieck, Christian Scheffer, and Arne Schmidt. Efficiently Reconfiguring a Connected Swarm of Labeled Robots. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 17:1-17:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.ISAAC.2022.17,
  author =	{Fekete, S\'{a}ndor P. and Kramer, Peter and Rieck, Christian and Scheffer, Christian and Schmidt, Arne},
  title =	{{Efficiently Reconfiguring a Connected Swarm of Labeled Robots}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{17:1--17:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.17},
  URN =		{urn:nbn:de:0030-drops-173028},
  doi =		{10.4230/LIPIcs.ISAAC.2022.17},
  annote =	{Keywords: Motion planning, parallel motion, bounded stretch, makespan, connectivity, swarm robotics}
}
Document
Media Exposition
Space Ants: Episode II - Coordinating Connected Catoms (Media Exposition)

Authors: Julien Bourgeois, Sándor P. Fekete, Ramin Kosfeld, Peter Kramer, Benoît Piranda, Christian Rieck, and Christian Scheffer

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
How can a set of identical mobile agents coordinate their motions to transform their arrangement from a given starting to a desired goal configuration? We consider this question in the context of actual physical devices called Catoms, which can perform reconfiguration, but need to maintain connectivity at all times to ensure communication and energy supply. We demonstrate and animate algorithmic results, in particular a proof of hardness, as well as an algorithm that guarantees constant stretch for certain classes of arrangements: If mapping the start configuration to the target configuration requires a maximum Manhattan distance of d, then the total duration of our overall schedule is in 𝒪(d), which is optimal up to constant factors.

Cite as

Julien Bourgeois, Sándor P. Fekete, Ramin Kosfeld, Peter Kramer, Benoît Piranda, Christian Rieck, and Christian Scheffer. Space Ants: Episode II - Coordinating Connected Catoms (Media Exposition). In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 65:1-65:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bourgeois_et_al:LIPIcs.SoCG.2022.65,
  author =	{Bourgeois, Julien and Fekete, S\'{a}ndor P. and Kosfeld, Ramin and Kramer, Peter and Piranda, Beno\^{i}t and Rieck, Christian and Scheffer, Christian},
  title =	{{Space Ants: Episode II - Coordinating Connected Catoms}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{65:1--65:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.65},
  URN =		{urn:nbn:de:0030-drops-160732},
  doi =		{10.4230/LIPIcs.SoCG.2022.65},
  annote =	{Keywords: Motion planning, parallel motion, bounded stretch, scaled shape, makespan, connectivity, swarm robotics}
}
Document
Connected Coordinated Motion Planning with Bounded Stretch

Authors: Sándor P. Fekete, Phillip Keldenich, Ramin Kosfeld, Christian Rieck, and Christian Scheffer

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We consider the problem of coordinated motion planning for a swarm of simple, identical robots: From a given start grid configuration of robots, we need to reach a desired target configuration via a sequence of parallel, continuous, collision-free robot motions, such that the set of robots induces a connected grid graph at all integer times. The objective is to minimize the makespan of the motion schedule, i.e., to reach the new configuration in a minimum amount of time. We show that this problem is NP-hard, even for deciding whether a makespan of 2 can be achieved, while it is possible to check in polynomial time whether a makespan of 1 can be achieved. On the algorithmic side, we establish simultaneous constant-factor approximation for two fundamental parameters, by achieving constant stretch for constant scale. Scaled shapes (which arise by increasing all dimensions of a given object by the same multiplicative factor) have been considered in previous seminal work on self-assembly, often with unbounded or logarithmic scale factors; we provide methods for a generalized scale factor, bounded by a constant. Moreover, our algorithm achieves a constant stretch factor: If mapping the start configuration to the target configuration requires a maximum Manhattan distance of d, then the total duration of our overall schedule is 𝒪(d), which is optimal up to constant factors.

Cite as

Sándor P. Fekete, Phillip Keldenich, Ramin Kosfeld, Christian Rieck, and Christian Scheffer. Connected Coordinated Motion Planning with Bounded Stretch. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.ISAAC.2021.9,
  author =	{Fekete, S\'{a}ndor P. and Keldenich, Phillip and Kosfeld, Ramin and Rieck, Christian and Scheffer, Christian},
  title =	{{Connected Coordinated Motion Planning with Bounded Stretch}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{9:1--9:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.9},
  URN =		{urn:nbn:de:0030-drops-154423},
  doi =		{10.4230/LIPIcs.ISAAC.2021.9},
  annote =	{Keywords: Motion planning, parallel motion, bounded stretch, scaled shape, makespan, connectivity, swarm robotics}
}
Document
Packing Squares into a Disk with Optimal Worst-Case Density

Authors: Sándor P. Fekete, Vijaykrishna Gurunathan, Kushagra Juneja, Phillip Keldenich, Linda Kleist, and Christian Scheffer

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We provide a tight result for a fundamental problem arising from packing squares into a circular container: The critical density of packing squares into a disk is δ = 8/(5π)≈ 0.509. This implies that any set of (not necessarily equal) squares of total area A ≤ 8/5 can always be packed into a disk with radius 1; in contrast, for any ε > 0 there are sets of squares of total area 8/5+ε that cannot be packed, even if squares may be rotated. This settles the last (and arguably, most elusive) case of packing circular or square objects into a circular or square container: The critical densities for squares in a square (1/2), circles in a square (π/(3+2√2) ≈ 0.539) and circles in a circle (1/2) have already been established, making use of recursive subdivisions of a square container into pieces bounded by straight lines, or the ability to use recursive arguments based on similarity of objects and container; neither of these approaches can be applied when packing squares into a circular container. Our proof uses a careful manual analysis, complemented by a computer-assisted part that is based on interval arithmetic. Beyond the basic mathematical importance, our result is also useful as a blackbox lemma for the analysis of recursive packing algorithms. At the same time, our approach showcases the power of a general framework for computer-assisted proofs, based on interval arithmetic.

Cite as

Sándor P. Fekete, Vijaykrishna Gurunathan, Kushagra Juneja, Phillip Keldenich, Linda Kleist, and Christian Scheffer. Packing Squares into a Disk with Optimal Worst-Case Density. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 36:1-36:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.SoCG.2021.36,
  author =	{Fekete, S\'{a}ndor P. and Gurunathan, Vijaykrishna and Juneja, Kushagra and Keldenich, Phillip and Kleist, Linda and Scheffer, Christian},
  title =	{{Packing Squares into a Disk with Optimal Worst-Case Density}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{36:1--36:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.36},
  URN =		{urn:nbn:de:0030-drops-138356},
  doi =		{10.4230/LIPIcs.SoCG.2021.36},
  annote =	{Keywords: Square packing, packing density, tight worst-case bound, interval arithmetic, approximation}
}
Document
Media Exposition
Can You Walk This? Eulerian Tours and IDEA Instructions (Media Exposition)

Authors: Aaron T. Becker, Sándor P. Fekete, Matthias Konitzny, Sebastian Morr, and Arne Schmidt

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We illustrate and animate the classic problem of deciding whether a given graph has an Eulerian path. Starting with a collection of instances of increasing difficulty, we present a set of pictorial instructions, and show how they can be used to solve all instances. These IDEA instructions ("A series of nonverbal algorithm assembly instructions") have proven to be both entertaining for experts and enlightening for novices. We (w)rap up with a song and dance to Euler’s original instance.

Cite as

Aaron T. Becker, Sándor P. Fekete, Matthias Konitzny, Sebastian Morr, and Arne Schmidt. Can You Walk This? Eulerian Tours and IDEA Instructions (Media Exposition). In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 62:1-62:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{becker_et_al:LIPIcs.SoCG.2021.62,
  author =	{Becker, Aaron T. and Fekete, S\'{a}ndor P. and Konitzny, Matthias and Morr, Sebastian and Schmidt, Arne},
  title =	{{Can You Walk This? Eulerian Tours and IDEA Instructions}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{62:1--62:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.62},
  URN =		{urn:nbn:de:0030-drops-138616},
  doi =		{10.4230/LIPIcs.SoCG.2021.62},
  annote =	{Keywords: Eulerian tours, algorithms, education, IDEA instructions}
}
Document
Minimum Scan Cover and Variants - Theory and Experiments

Authors: Kevin Buchin, Sándor P. Fekete, Alexander Hill, Linda Kleist, Irina Kostitsyna, Dominik Krupke, Roel Lambers, and Martijn Struijs

Published in: LIPIcs, Volume 190, 19th International Symposium on Experimental Algorithms (SEA 2021)


Abstract
We consider a spectrum of geometric optimization problems motivated by contexts such as satellite communication and astrophysics. In the problem Minimum Scan Cover with Angular Costs, we are given a graph G that is embedded in Euclidean space. The edges of G need to be scanned, i.e., probed from both of their vertices. In order to scan their edge, two vertices need to face each other; changing the heading of a vertex incurs some cost in terms of energy or rotation time that is proportional to the corresponding rotation angle. Our goal is to compute schedules that minimize the following objective functions: (i) in Minimum Makespan Scan Cover (MSC-MS), this is the time until all edges are scanned; (ii) in Minimum Total Energy Scan Cover (MSC-TE), the sum of all rotation angles; (iii) in Minimum Bottleneck Energy Scan Cover (MSC-BE), the maximum total rotation angle at one vertex. Previous theoretical work on MSC-MS revealed a close connection to graph coloring and the cut cover problem, leading to hardness and approximability results. In this paper, we present polynomial-time algorithms for 1D instances of MSC-TE and MSC-BE, but NP-hardness proofs for bipartite 2D instances. For bipartite graphs in 2D, we also give 2-approximation algorithms for both MSC-TE and MSC-BE. Most importantly, we provide a comprehensive study of practical methods for all three problems. We compare three different mixed-integer programming and two constraint programming approaches, and show how to compute provably optimal solutions for geometric instances with up to 300 edges. Additionally, we compare the performance of different meta-heuristics for even larger instances.

Cite as

Kevin Buchin, Sándor P. Fekete, Alexander Hill, Linda Kleist, Irina Kostitsyna, Dominik Krupke, Roel Lambers, and Martijn Struijs. Minimum Scan Cover and Variants - Theory and Experiments. In 19th International Symposium on Experimental Algorithms (SEA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 190, pp. 4:1-4:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.SEA.2021.4,
  author =	{Buchin, Kevin and Fekete, S\'{a}ndor P. and Hill, Alexander and Kleist, Linda and Kostitsyna, Irina and Krupke, Dominik and Lambers, Roel and Struijs, Martijn},
  title =	{{Minimum Scan Cover and Variants - Theory and Experiments}},
  booktitle =	{19th International Symposium on Experimental Algorithms (SEA 2021)},
  pages =	{4:1--4:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-185-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{190},
  editor =	{Coudert, David and Natale, Emanuele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2021.4},
  URN =		{urn:nbn:de:0030-drops-137765},
  doi =		{10.4230/LIPIcs.SEA.2021.4},
  annote =	{Keywords: Graph scanning, angular metric, makespan, energy, bottleneck, complexity, approximation, algorithm engineering, mixed-integer programming, constraint programming}
}
Document
Probing a Set of Trajectories to Maximize Captured Information

Authors: Sándor P. Fekete, Alexander Hill, Dominik Krupke, Tyler Mayer, Joseph S. B. Mitchell, Ojas Parekh, and Cynthia A. Phillips

Published in: LIPIcs, Volume 160, 18th International Symposium on Experimental Algorithms (SEA 2020)


Abstract
We study a trajectory analysis problem we call the Trajectory Capture Problem (TCP), in which, for a given input set T of trajectories in the plane, and an integer k≥ 2, we seek to compute a set of k points ("portals") to maximize the total weight of all subtrajectories of T between pairs of portals. This problem naturally arises in trajectory analysis and summarization. We show that the TCP is NP-hard (even in very special cases) and give some first approximation results. Our main focus is on attacking the TCP with practical algorithm-engineering approaches, including integer linear programming (to solve instances to provable optimality) and local search methods. We study the integrality gap arising from such approaches. We analyze our methods on different classes of data, including benchmark instances that we generate. Our goal is to understand the best performing heuristics, based on both solution time and solution quality. We demonstrate that we are able to compute provably optimal solutions for real-world instances.

Cite as

Sándor P. Fekete, Alexander Hill, Dominik Krupke, Tyler Mayer, Joseph S. B. Mitchell, Ojas Parekh, and Cynthia A. Phillips. Probing a Set of Trajectories to Maximize Captured Information. In 18th International Symposium on Experimental Algorithms (SEA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 160, pp. 5:1-5:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.SEA.2020.5,
  author =	{Fekete, S\'{a}ndor P. and Hill, Alexander and Krupke, Dominik and Mayer, Tyler and Mitchell, Joseph S. B. and Parekh, Ojas and Phillips, Cynthia A.},
  title =	{{Probing a Set of Trajectories to Maximize Captured Information}},
  booktitle =	{18th International Symposium on Experimental Algorithms (SEA 2020)},
  pages =	{5:1--5:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-148-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{160},
  editor =	{Faro, Simone and Cantone, Domenico},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2020.5},
  URN =		{urn:nbn:de:0030-drops-120796},
  doi =		{10.4230/LIPIcs.SEA.2020.5},
  annote =	{Keywords: Algorithm engineering, optimization, complexity, approximation, trajectories}
}
Document
Worst-Case Optimal Covering of Rectangles by Disks

Authors: Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, and Sahil Shah

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any λ ≥ 1, the critical covering area A^*(λ) is the minimum value for which any set of disks with total area at least A^*(λ) can cover a rectangle of dimensions λ× 1. We show that there is a threshold value λ₂ = √{√7/2 - 1/4} ≈ 1.035797…, such that for λ < λ₂ the critical covering area A^*(λ) is A^*(λ) = 3π(λ²/16 + 5/32 + 9/(256λ²)), and for λ ≥ λ₂, the critical area is A^*(λ)=π(λ²+2)/4; these values are tight. For the special case λ=1, i.e., for covering a unit square, the critical covering area is 195π/256 ≈ 2.39301…. The proof uses a careful combination of manual and automatic analysis, demonstrating the power of the employed interval arithmetic technique.

Cite as

Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, and Sahil Shah. Worst-Case Optimal Covering of Rectangles by Disks. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 42:1-42:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.SoCG.2020.42,
  author =	{Fekete, S\'{a}ndor P. and Gupta, Utkarsh and Keldenich, Phillip and Scheffer, Christian and Shah, Sahil},
  title =	{{Worst-Case Optimal Covering of Rectangles by Disks}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{42:1--42:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.42},
  URN =		{urn:nbn:de:0030-drops-122003},
  doi =		{10.4230/LIPIcs.SoCG.2020.42},
  annote =	{Keywords: Disk covering, critical density, covering coefficient, tight worst-case bound, interval arithmetic, approximation}
}
Document
Minimum Scan Cover with Angular Transition Costs

Authors: Sándor P. Fekete, Linda Kleist, and Dominik Krupke

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We provide a comprehensive study of a natural geometric optimization problem motivated by questions in the context of satellite communication and astrophysics. In the problem Minimum Scan Cover with Angular Costs (msc), we are given a graph G that is embedded in Euclidean space. The edges of G need to be scanned, i.e., probed from both of their vertices. In order to scan their edge, two vertices need to face each other; changing the heading of a vertex takes some time proportional to the corresponding turn angle. Our goal is to minimize the time until all scans are completed, i.e., to compute a schedule of minimum makespan. We show that msc is closely related to both graph coloring and the minimum (directed and undirected) cut cover problem; in particular, we show that the minimum scan time for instances in 1D and 2D lies in Θ(log χ(G)), while for 3D the minimum scan time is not upper bounded by χ(G). We use this relationship to prove that the existence of a constant-factor approximation implies P=NP, even for one-dimensional instances. In 2D, we show that it is NP-hard to approximate a minimum scan cover within less than a factor of 3/2, even for bipartite graphs; conversely, we present a 9/2-approximation algorithm for this scenario. Generally, we give an O(c)-approximation for k-colored graphs with k ≤ χ(G)^c. For general metric cost functions, we provide approximation algorithms whose performance guarantee depend on the arboricity of the graph.

Cite as

Sándor P. Fekete, Linda Kleist, and Dominik Krupke. Minimum Scan Cover with Angular Transition Costs. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 43:1-43:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.SoCG.2020.43,
  author =	{Fekete, S\'{a}ndor P. and Kleist, Linda and Krupke, Dominik},
  title =	{{Minimum Scan Cover with Angular Transition Costs}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{43:1--43:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.43},
  URN =		{urn:nbn:de:0030-drops-122014},
  doi =		{10.4230/LIPIcs.SoCG.2020.43},
  annote =	{Keywords: Graph scanning, graph coloring, angular metric, complexity, approximation, scheduling}
}
Document
Media Exposition
Coordinated Particle Relocation with Global Signals and Local Friction (Media Exposition)

Authors: Victor M. Baez, Aaron T. Becker, Sándor P. Fekete, and Arne Schmidt

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
In this video, we present theoretical and practical methods for achieving arbitrary reconfiguration of a set of objects, based on the use of external forces, such as a magnetic field or gravity: Upon actuation, each object is pushed in the same direction. This concept can be used for a wide range of applications in which particles do not have their own energy supply or in which they are subject to the same global control commands. A crucial challenge for achieving any desired target configuration is breaking global symmetry in a controlled fashion. Previous work (some of which was presented during SoCG 2015) made use of specifically placed barriers; however, introducing precisely located obstacles into the workspace is impractical for many scenarios. In this paper, we present a different, less intrusive method: making use of the interplay between static friction with a boundary and the external force to achieve arbitrary reconfiguration. Our key contributions are theoretical characterizations of the critical coefficient of friction that is sufficient for rearranging two particles in triangles, convex polygons, and regular polygons; a method for reconfiguring multiple particles in rectangular workspaces, and deriving practical algorithms for these rearrangements. Hardware experiments show the efficacy of these procedures, demonstrating the usefulness of this novel approach.

Cite as

Victor M. Baez, Aaron T. Becker, Sándor P. Fekete, and Arne Schmidt. Coordinated Particle Relocation with Global Signals and Local Friction (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 72:1-72:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{baez_et_al:LIPIcs.SoCG.2020.72,
  author =	{Baez, Victor M. and Becker, Aaron T. and Fekete, S\'{a}ndor P. and Schmidt, Arne},
  title =	{{Coordinated Particle Relocation with Global Signals and Local Friction}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{72:1--72:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.72},
  URN =		{urn:nbn:de:0030-drops-122305},
  doi =		{10.4230/LIPIcs.SoCG.2020.72},
  annote =	{Keywords: Global control, reconfiguration, geometric algorithms, friction}
}
Document
Media Exposition
Space Ants: Constructing and Reconfiguring Large-Scale Structures with Finite Automata (Media Exposition)

Authors: Amira Abdel-Rahman, Aaron T. Becker, Daniel E. Biediger, Kenneth C. Cheung, Sándor P. Fekete, Neil A. Gershenfeld, Sabrina Hugo, Benjamin Jenett, Phillip Keldenich, Eike Niehs, Christian Rieck, Arne Schmidt, Christian Scheffer, and Michael Yannuzzi

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
In this video, we consider recognition and reconfiguration of lattice-based cellular structures by very simple robots with only basic functionality. The underlying motivation is the construction and modification of space facilities of enormous dimensions, where the combination of new materials with extremely simple robots promises structures of previously unthinkable size and flexibility. We present algorithmic methods that are able to detect and reconfigure arbitrary polyominoes, based on finite-state robots, while also preserving connectivity of a structure during reconfiguration. Specific results include methods for determining a bounding box, scaling a given arrangement, and adapting more general algorithms for transforming polyominoes.

Cite as

Amira Abdel-Rahman, Aaron T. Becker, Daniel E. Biediger, Kenneth C. Cheung, Sándor P. Fekete, Neil A. Gershenfeld, Sabrina Hugo, Benjamin Jenett, Phillip Keldenich, Eike Niehs, Christian Rieck, Arne Schmidt, Christian Scheffer, and Michael Yannuzzi. Space Ants: Constructing and Reconfiguring Large-Scale Structures with Finite Automata (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 73:1-73:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{abdelrahman_et_al:LIPIcs.SoCG.2020.73,
  author =	{Abdel-Rahman, Amira and Becker, Aaron T. and Biediger, Daniel E. and Cheung, Kenneth C. and Fekete, S\'{a}ndor P. and Gershenfeld, Neil A. and Hugo, Sabrina and Jenett, Benjamin and Keldenich, Phillip and Niehs, Eike and Rieck, Christian and Schmidt, Arne and Scheffer, Christian and Yannuzzi, Michael},
  title =	{{Space Ants: Constructing and Reconfiguring Large-Scale Structures with Finite Automata}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{73:1--73:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.73},
  URN =		{urn:nbn:de:0030-drops-122310},
  doi =		{10.4230/LIPIcs.SoCG.2020.73},
  annote =	{Keywords: Finite automata, reconfiguration, construction, scaling}
}
Document
Media Exposition
How to Make a CG Video (Media Exposition)

Authors: Aaron T. Becker and Sándor P. Fekete

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
In this video we describe why producing a Computational Geometry video is a good idea, what it takes to make one, and how to actually do it. This includes a guide for the overall process, a number of examples, and a variety of tips and tricks.

Cite as

Aaron T. Becker and Sándor P. Fekete. How to Make a CG Video (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 74:1-74:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{becker_et_al:LIPIcs.SoCG.2020.74,
  author =	{Becker, Aaron T. and Fekete, S\'{a}ndor P.},
  title =	{{How to Make a CG Video}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{74:1--74:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.74},
  URN =		{urn:nbn:de:0030-drops-122328},
  doi =		{10.4230/LIPIcs.SoCG.2020.74},
  annote =	{Keywords: Videos, animation, education, SoCG Multimedia}
}
Document
Media Exposition
Covering Rectangles by Disks: The Video (Media Exposition)

Authors: Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
In this video, we motivate and visualize a fundamental result for covering a rectangle by a set of non-uniform circles: For any λ ≥ 1, the critical covering area A^*(λ) is the minimum value for which any set of disks with total area at least A^*(λ) can cover a rectangle of dimensions λ× 1. We show that there is a threshold value λ₂ = √(√7/2 - 1/4) ≈ 1.035797…, such that for λ < λ₂ the critical covering area A^*(λ) is A^*(λ) = 3π(λ²/16 + 5/32 + 9/256λ²), and for λ ≥ λ₂, the critical area is A^*(λ) = π(λ²+2)/4; these values are tight. For the special case λ=1, i.e., for covering a unit square, the critical covering area is 195π/256 ≈ 2.39301…. We describe the structure of the proof, and show animations of some of the main components.

Cite as

Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer. Covering Rectangles by Disks: The Video (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 75:1-75:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.SoCG.2020.75,
  author =	{Fekete, S\'{a}ndor P. and Keldenich, Phillip and Scheffer, Christian},
  title =	{{Covering Rectangles by Disks: The Video}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{75:1--75:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.75},
  URN =		{urn:nbn:de:0030-drops-122337},
  doi =		{10.4230/LIPIcs.SoCG.2020.75},
  annote =	{Keywords: Disk covering, critical density, covering coefficient, tight worst-case bound, interval arithmetic, approximation}
}
  • Refine by Author
  • 25 Fekete, Sándor P.
  • 14 Scheffer, Christian
  • 12 Fekete, Sándor
  • 11 Keldenich, Phillip
  • 9 Becker, Aaron T.
  • Show More...

  • Refine by Classification
  • 15 Theory of computation → Computational geometry
  • 5 Theory of computation → Packing and covering problems
  • 3 Computing methodologies → Motion path planning
  • 3 Theory of computation → Design and analysis of algorithms
  • 2 Applied computing → Education
  • Show More...

  • Refine by Keyword
  • 10 approximation
  • 9 complexity
  • 8 computational geometry
  • 7 Motion planning
  • 5 makespan
  • Show More...

  • Refine by Type
  • 118 document

  • Refine by Publication Year
  • 76 2016
  • 9 2007
  • 7 2020
  • 6 2010
  • 4 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail