8 Search Results for "Hand, David J."


Document
Recognizing H-Graphs - Beyond Circular-Arc Graphs

Authors: Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
In 1992 Biró, Hujter and Tuza introduced, for every fixed connected graph H, the class of H-graphs, defined as the intersection graphs of connected subgraphs of some subdivision of H. Such classes of graphs are related to many known graph classes: for example, K₂-graphs coincide with interval graphs, K₃-graphs with circular-arc graphs, the union of T-graphs, where T ranges over all trees, coincides with chordal graphs. Recently, quite a lot of research has been devoted to understanding the tractability border for various computational problems, such as recognition or isomorphism testing, in classes of H-graphs for different graphs H. In this work we undertake this research topic, focusing on the recognition problem. Chaplick, Töpfer, Voborník, and Zeman showed an XP-algorithm testing whether a given graph is a T-graph, where the parameter is the size of the tree T. In particular, for every fixed tree T the recognition of T-graphs can be solved in polynomial time. Tucker showed a polynomial time algorithm recognizing K₃-graphs (circular-arc graphs). On the other hand, Chaplick et al. showed also that for every fixed graph H containing two distinct cycles sharing an edge, the recognition of H-graphs is NP-hard. The main two results of this work narrow the gap between the NP-hard and 𝖯 cases of H-graph recognition. First, we show that the recognition of H-graphs is NP-hard when H contains two distinct cycles. On the other hand, we show a polynomial-time algorithm recognizing L-graphs, where L is a graph containing a cycle and an edge attached to it (which we call lollipop graphs). Our work leaves open the recognition problems of M-graphs for every unicyclic graph M different from a cycle and a lollipop.

Cite as

Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman. Recognizing H-Graphs - Beyond Circular-Arc Graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{agaoglucagirici_et_al:LIPIcs.MFCS.2023.8,
  author =	{A\u{g}ao\u{g}lu \c{C}a\u{g}{\i}r{\i}c{\i}, Deniz and \c{C}a\u{g}{\i}r{\i}c{\i}, Onur and Derbisz, Jan and Hartmann, Tim A. and Hlin\v{e}n\'{y}, Petr and Kratochv{\'\i}l, Jan and Krawczyk, Tomasz and Zeman, Peter},
  title =	{{Recognizing H-Graphs - Beyond Circular-Arc Graphs}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{8:1--8:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.8},
  URN =		{urn:nbn:de:0030-drops-185420},
  doi =		{10.4230/LIPIcs.MFCS.2023.8},
  annote =	{Keywords: H-graphs, Intersection Graphs, Helly Property}
}
Document
On the Parameterized Complexity of Computing st-Orientations with Few Transitive Edges

Authors: Carla Binucci, Giuseppe Liotta, Fabrizio Montecchiani, Giacomo Ortali, and Tommaso Piselli

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Orienting the edges of an undirected graph such that the resulting digraph satisfies some given constraints is a classical problem in graph theory, with multiple algorithmic applications. In particular, an st-orientation orients each edge of the input graph such that the resulting digraph is acyclic, and it contains a single source s and a single sink t. Computing an st-orientation of a graph can be done efficiently, and it finds notable applications in graph algorithms and in particular in graph drawing. On the other hand, finding an st-orientation with at most k transitive edges is more challenging and it was recently proven to be NP-hard already when k = 0. We strengthen this result by showing that the problem remains NP-hard even for graphs of bounded diameter, and for graphs of bounded vertex degree. These computational lower bounds naturally raise the question about which structural parameters can lead to tractable parameterizations of the problem. Our main result is a fixed-parameter tractable algorithm parameterized by treewidth.

Cite as

Carla Binucci, Giuseppe Liotta, Fabrizio Montecchiani, Giacomo Ortali, and Tommaso Piselli. On the Parameterized Complexity of Computing st-Orientations with Few Transitive Edges. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 18:1-18:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{binucci_et_al:LIPIcs.MFCS.2023.18,
  author =	{Binucci, Carla and Liotta, Giuseppe and Montecchiani, Fabrizio and Ortali, Giacomo and Piselli, Tommaso},
  title =	{{On the Parameterized Complexity of Computing st-Orientations with Few Transitive Edges}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{18:1--18:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.18},
  URN =		{urn:nbn:de:0030-drops-185524},
  doi =		{10.4230/LIPIcs.MFCS.2023.18},
  annote =	{Keywords: st-orientations, parameterized complexity, graph drawing}
}
Document
Track A: Algorithms, Complexity and Games
LCC and LDC: Tailor-Made Distance Amplification and a Refined Separation

Authors: Gil Cohen and Tal Yankovitz

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
The Alon-Edmonds-Luby distance amplification procedure (FOCS 1995) is an algorithm that transforms a code with vanishing distance to a code with constant distance. AEL was invoked by Kopparty, Meir, Ron-Zewi, and Saraf (J. ACM 2017) for obtaining their state-of-the-art LDC, LCC and LTC. Cohen and Yankovitz (CCC 2021) devised a procedure that can amplify inverse-polynomial distances, exponentially extending the regime of distances that can be amplified by AEL. However, the improved procedure only works for LDC and assuming rate 1-1/(poly log n). In this work we devise a distance amplification procedure for LCC with inverse-polynomial distances even for vanishing rate 1/(poly log log n). For LDC, we obtain a more modest improvement and require rate 1-1/(poly log log n). Thus, the tables have turned and it is now LCC that can be better amplified. Our key idea for accomplishing this, deviating from prior work, is to tailor the distance amplification procedure to the code at hand. Our second result concerns the relation between linear LDC and LCC. We prove the existence of linear LDC that are not LCC, qualitatively extending a separation by Kaufman and Viderman (RANDOM 2010).

Cite as

Gil Cohen and Tal Yankovitz. LCC and LDC: Tailor-Made Distance Amplification and a Refined Separation. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 44:1-44:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.ICALP.2022.44,
  author =	{Cohen, Gil and Yankovitz, Tal},
  title =	{{LCC and LDC: Tailor-Made Distance Amplification and a Refined Separation}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{44:1--44:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.44},
  URN =		{urn:nbn:de:0030-drops-163858},
  doi =		{10.4230/LIPIcs.ICALP.2022.44},
  annote =	{Keywords: Locally Correctable Codes, Locally Decodable Codes, Distance Amplifications}
}
Document
Telescoping Filter: A Practical Adaptive Filter

Authors: David J. Lee, Samuel McCauley, Shikha Singh, and Max Stein

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
Filters are small, fast, and approximate set membership data structures. They are often used to filter out expensive accesses to a remote set S for negative queries (that is, filtering out queries x ∉ S). Filters have one-sided errors: on a negative query, a filter may say "present" with a tunable false-positive probability of ε. Correctness is traded for space: filters only use log (1/ε) + O(1) bits per element. The false-positive guarantees of most filters, however, hold only for a single query. In particular, if x is a false positive, a subsequent query to x is a false positive with probability 1, not ε. With this in mind, recent work has introduced the notion of an adaptive filter. A filter is adaptive if each query is a false positive with probability ε, regardless of answers to previous queries. This requires "fixing" false positives as they occur. Adaptive filters not only provide strong false positive guarantees in adversarial environments but also improve query performance on practical workloads by eliminating repeated false positives. Existing work on adaptive filters falls into two categories. On the one hand, there are practical filters, based on the cuckoo filter, that attempt to fix false positives heuristically without meeting the adaptivity guarantee. On the other hand, the broom filter is a very complex adaptive filter that meets the optimal theoretical bounds. In this paper, we bridge this gap by designing the telescoping adaptive filter (TAF), a practical, provably adaptive filter. We provide theoretical false-positive and space guarantees for our filter, along with empirical results where we compare its performance against state-of-the-art filters. We also implement the broom filter and compare it to the TAF. Our experiments show that theoretical adaptivity can lead to improved false-positive performance on practical inputs, and can be achieved while maintaining throughput that is similar to non-adaptive filters.

Cite as

David J. Lee, Samuel McCauley, Shikha Singh, and Max Stein. Telescoping Filter: A Practical Adaptive Filter. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 60:1-60:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{lee_et_al:LIPIcs.ESA.2021.60,
  author =	{Lee, David J. and McCauley, Samuel and Singh, Shikha and Stein, Max},
  title =	{{Telescoping Filter: A Practical Adaptive Filter}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{60:1--60:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.60},
  URN =		{urn:nbn:de:0030-drops-146410},
  doi =		{10.4230/LIPIcs.ESA.2021.60},
  annote =	{Keywords: Filters, approximate-membership query data structures (AMQs), Bloom filters, quotient filters, cuckoo filters, adaptivity, succinct data structures}
}
Document
Budgeted Dominating Sets in Uncertain Graphs

Authors: Keerti Choudhary, Avi Cohen, N. S. Narayanaswamy, David Peleg, and R. Vijayaragunathan

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We study the Budgeted Dominating Set (BDS) problem on uncertain graphs, namely, graphs with a probability distribution p associated with the edges, such that an edge e exists in the graph with probability p(e). The input to the problem consists of a vertex-weighted uncertain graph 𝒢 = (V, E, p, ω) and an integer budget (or solution size) k, and the objective is to compute a vertex set S of size k that maximizes the expected total domination (or total weight) of vertices in the closed neighborhood of S. We refer to the problem as the Probabilistic Budgeted Dominating Set (PBDS) problem. In this article, we present the following results on the complexity of the PBDS problem. 1) We show that the PBDS problem is NP-complete even when restricted to uncertain trees of diameter at most four. This is in sharp contrast with the well-known fact that the BDS problem is solvable in polynomial time in trees. We further show that PBDS is 𝖶[1]-hard for the budget parameter k, and under the Exponential time hypothesis it cannot be solved in n^o(k) time. 2) We show that if one is willing to settle for (1-ε) approximation, then there exists a PTAS for PBDS on trees. Moreover, for the scenario of uniform edge-probabilities, the problem can be solved optimally in polynomial time. 3) We consider the parameterized complexity of the PBDS problem, and show that Uni-PBDS (where all edge probabilities are identical) is 𝖶[1]-hard for the parameter pathwidth. On the other hand, we show that it is FPT in the combined parameters of the budget k and the treewidth. 4) Finally, we extend some of our parameterized results to planar and apex-minor-free graphs. Our first hardness proof (Thm. 1) makes use of the new problem of k-Subset Σ-Π Maximization (k-SPM), which we believe is of independent interest. We prove its NP-hardness by a reduction from the well-known k-SUM problem, presenting a close relationship between the two problems.

Cite as

Keerti Choudhary, Avi Cohen, N. S. Narayanaswamy, David Peleg, and R. Vijayaragunathan. Budgeted Dominating Sets in Uncertain Graphs. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 32:1-32:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{choudhary_et_al:LIPIcs.MFCS.2021.32,
  author =	{Choudhary, Keerti and Cohen, Avi and Narayanaswamy, N. S. and Peleg, David and Vijayaragunathan, R.},
  title =	{{Budgeted Dominating Sets in Uncertain Graphs}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{32:1--32:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.32},
  URN =		{urn:nbn:de:0030-drops-144723},
  doi =		{10.4230/LIPIcs.MFCS.2021.32},
  annote =	{Keywords: Uncertain graphs, Dominating set, NP-hard, PTAS, treewidth, planar graph}
}
Document
Simple Heuristics Yield Provable Algorithms for Masked Low-Rank Approximation

Authors: Cameron Musco, Christopher Musco, and David P. Woodruff

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
In the masked low-rank approximation problem, one is given data matrix A ∈ ℝ^{n × n} and binary mask matrix W ∈ {0,1}^{n × n}. The goal is to find a rank-k matrix L for which: cost(L) := ∑_{i=1}^n ∑_{j=1}^n W_{i,j} ⋅ (A_{i,j} - L_{i,j})² ≤ OPT + ε ‖A‖_F², where OPT = min_{rank-k L̂} cost(L̂) and ε is a given error parameter. Depending on the choice of W, the above problem captures factor analysis, low-rank plus diagonal decomposition, robust PCA, low-rank matrix completion, low-rank plus block matrix approximation, low-rank recovery from monotone missing data, and a number of other important problems. Many of these problems are NP-hard, and while algorithms with provable guarantees are known in some cases, they either 1) run in time n^Ω(k²/ε) or 2) make strong assumptions, for example, that A is incoherent or that the entries in W are chosen independently and uniformly at random. In this work, we show that a common polynomial time heuristic, which simply sets A to 0 where W is 0, and then finds a standard low-rank approximation, yields bicriteria approximation guarantees for this problem. In particular, for rank k' > k depending on the public coin partition number of W, the heuristic outputs rank-k' L with cost(L) ≤ OPT + ε ‖A‖_F². This partition number is in turn bounded by the randomized communication complexity of W, when interpreted as a two-player communication matrix. For many important cases, including all those listed above, this yields bicriteria approximation guarantees with rank k' = k ⋅ poly(log n/ε). Beyond this result, we show that different notions of communication complexity yield bicriteria algorithms for natural variants of masked low-rank approximation. For example, multi-player number-in-hand communication complexity connects to masked tensor decomposition and non-deterministic communication complexity to masked Boolean low-rank factorization.

Cite as

Cameron Musco, Christopher Musco, and David P. Woodruff. Simple Heuristics Yield Provable Algorithms for Masked Low-Rank Approximation. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 6:1-6:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{musco_et_al:LIPIcs.ITCS.2021.6,
  author =	{Musco, Cameron and Musco, Christopher and Woodruff, David P.},
  title =	{{Simple Heuristics Yield Provable Algorithms for Masked Low-Rank Approximation}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{6:1--6:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.6},
  URN =		{urn:nbn:de:0030-drops-135452},
  doi =		{10.4230/LIPIcs.ITCS.2021.6},
  annote =	{Keywords: low-rank approximation, communication complexity, weighted low-rank approximation, bicriteria approximation algorithms}
}
Document
Approximate Majority with Catalytic Inputs

Authors: Talley Amir, James Aspnes, and John Lazarsfeld

Published in: LIPIcs, Volume 184, 24th International Conference on Principles of Distributed Systems (OPODIS 2020)


Abstract
Population protocols [Dana Angluin et al., 2006] are a class of algorithms for modeling distributed computation in networks of finite-state agents communicating through pairwise interactions. Their suitability for analyzing numerous chemical processes has motivated the adaptation of the original population protocol framework to better model these chemical systems. In this paper, we further the study of two such adaptations in the context of solving approximate majority: persistent-state agents (or catalysts) and spontaneous state changes (or leaks). Based on models considered in recent protocols for populations with persistent-state agents [Bartlomiej Dudek and Adrian Kosowski, 2018; Alistarh et al., 2017; Dan Alistarh et al., 2020], we assume a population with n catalytic input agents and m worker agents, and the goal of the worker agents is to compute some predicate over the states of the catalytic inputs. We call this model the Catalytic Input (CI) model. For m = Θ(n), we show that computing the parity of the input population with high probability requires at least Ω(n²) total interactions, demonstrating a strong separation between the CI model and the standard population protocol model. On the other hand, we show that the simple third-state dynamics [Angluin et al., 2008; Perron et al., 2009] for approximate majority in the standard model can be naturally adapted to the CI model: we present such a constant-state protocol for the CI model that solves approximate majority in O(n log n) total steps with high probability when the input margin is Ω(√{n log n}). We then show the robustness of third-state dynamics protocols to the transient leaks events introduced by [Alistarh et al., 2017; Dan Alistarh et al., 2020]. In both the original and CI models, these protocols successfully compute approximate majority with high probability in the presence of leaks occurring at each step with probability β ≤ O(√{n log n}/n). The resilience of these dynamics to leaks exhibits similarities to previous work involving Byzantine agents, and we define and prove a notion of equivalence between the two.

Cite as

Talley Amir, James Aspnes, and John Lazarsfeld. Approximate Majority with Catalytic Inputs. In 24th International Conference on Principles of Distributed Systems (OPODIS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 184, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{amir_et_al:LIPIcs.OPODIS.2020.19,
  author =	{Amir, Talley and Aspnes, James and Lazarsfeld, John},
  title =	{{Approximate Majority with Catalytic Inputs}},
  booktitle =	{24th International Conference on Principles of Distributed Systems (OPODIS 2020)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-176-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{184},
  editor =	{Bramas, Quentin and Oshman, Rotem and Romano, Paolo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2020.19},
  URN =		{urn:nbn:de:0030-drops-135040},
  doi =		{10.4230/LIPIcs.OPODIS.2020.19},
  annote =	{Keywords: population protocols, approximate majority, catalysts, leaks, lower bound}
}
Document
Note on parallel universes

Authors: Niall Adams and David J. Hand

Published in: Dagstuhl Seminar Proceedings, Volume 7181, Parallel Universes and Local Patterns (2007)


Abstract
The parallel universes idea is an attempt to integrate several aspects of learning which share some common aspects. This is an interesting idea: if successful, insights could cross-fertilise, leading to advances in each area. The "multi-view" perspective seems to us to have particular potential.

Cite as

Niall Adams and David J. Hand. Note on parallel universes. In Parallel Universes and Local Patterns. Dagstuhl Seminar Proceedings, Volume 7181, pp. 1-2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{adams_et_al:DagSemProc.07181.6,
  author =	{Adams, Niall and Hand, David J.},
  title =	{{Note on parallel universes}},
  booktitle =	{Parallel Universes and Local Patterns},
  pages =	{1--2},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{7181},
  editor =	{Michael R. Berthold and Katharina Morik and Arno Siebes},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.07181.6},
  URN =		{urn:nbn:de:0030-drops-12565},
  doi =		{10.4230/DagSemProc.07181.6},
  annote =	{Keywords: Local patterns, fraud detection}
}
  • Refine by Author
  • 1 Adams, Niall
  • 1 Amir, Talley
  • 1 Aspnes, James
  • 1 Ağaoğlu Çağırıcı, Deniz
  • 1 Binucci, Carla
  • Show More...

  • Refine by Classification
  • 2 Mathematics of computing → Graph algorithms
  • 1 Computing methodologies → Distributed algorithms
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Communication complexity
  • 1 Theory of computation → Data structures design and analysis
  • Show More...

  • Refine by Keyword
  • 1 Bloom filters
  • 1 Distance Amplifications
  • 1 Dominating set
  • 1 Filters
  • 1 H-graphs
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 4 2021
  • 2 2023
  • 1 2007
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail