9 Search Results for "Hunkenschr�der, Christoph"


Document
Faster Algorithms for Integer Programs with Block Structure

Authors: Friedrich Eisenbrand, Christoph Hunkenschröder, and Kim-Manuel Klein

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We consider integer programming problems max {c^Tx : A x = b, l <= x <= u, x in Z^{nt}} where A has a (recursive) block-structure generalizing n-fold integer programs which recently received considerable attention in the literature. An n-fold IP is an integer program where A consists of n repetitions of submatrices A in Z^{r × t} on the top horizontal part and n repetitions of a matrix B in Z^{s × t} on the diagonal below the top part. Instead of allowing only two types of block matrices, one for the horizontal line and one for the diagonal, we generalize the n-fold setting to allow for arbitrary matrices in every block. We show that such an integer program can be solved in time n^2t^2 phi x (r s delta)^{O(rs^2+ sr^2)} (ignoring logarithmic factors). Here delta is an upper bound on the largest absolute value of an entry of A and phi is the largest binary encoding length of a coefficient of c. This improves upon the previously best algorithm of Hemmecke, Onn and Romanchuk that runs in time n^3t^3 phi x delta^{O(st(r+t))}. In particular, our algorithm is not exponential in the number t of columns of A and B. Our algorithm is based on a new upper bound on the l_1-norm of an element of the Graver basis of an integer matrix and on a proximity bound between the LP and IP optimal solutions tailored for IPs with block structure. These new bounds rely on the Steinitz Lemma. Furthermore, we extend our techniques to the recently introduced tree-fold IPs, where we again present a more efficient algorithm in a generalized setting.

Cite as

Friedrich Eisenbrand, Christoph Hunkenschröder, and Kim-Manuel Klein. Faster Algorithms for Integer Programs with Block Structure. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 49:1-49:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{eisenbrand_et_al:LIPIcs.ICALP.2018.49,
  author =	{Eisenbrand, Friedrich and Hunkenschr\"{o}der, Christoph and Klein, Kim-Manuel},
  title =	{{Faster Algorithms for Integer Programs with Block Structure}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{49:1--49:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.49},
  URN =		{urn:nbn:de:0030-drops-90537},
  doi =		{10.4230/LIPIcs.ICALP.2018.49},
  annote =	{Keywords: n-fold, Tree-fold, Integer Programming}
}
Document
Global Caching for the Alternation-free µ-Calculus

Authors: Daniel Hausmann, Lutz Schröder, and Christoph Egger

Published in: LIPIcs, Volume 59, 27th International Conference on Concurrency Theory (CONCUR 2016)


Abstract
We present a sound, complete, and optimal single-pass tableau algorithm for the alternation-free mu-calculus. The algorithm supports global caching with intermediate propagation and runs in time 2^O(n). In game-theoretic terms, our algorithm integrates the steps for constructing and solving the Büchi game arising from the input tableau into a single procedure; this is done on-the-fly, i.e. may terminate before the game has been fully constructed. This suggests a slogan to the effect that global caching = game solving on-the-fly. A prototypical implementation shows promising initial results.

Cite as

Daniel Hausmann, Lutz Schröder, and Christoph Egger. Global Caching for the Alternation-free µ-Calculus. In 27th International Conference on Concurrency Theory (CONCUR 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 59, pp. 34:1-34:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{hausmann_et_al:LIPIcs.CONCUR.2016.34,
  author =	{Hausmann, Daniel and Schr\"{o}der, Lutz and Egger, Christoph},
  title =	{{Global Caching for the Alternation-free µ-Calculus}},
  booktitle =	{27th International Conference on Concurrency Theory (CONCUR 2016)},
  pages =	{34:1--34:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-017-0},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{59},
  editor =	{Desharnais, Jos\'{e}e and Jagadeesan, Radha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2016.34},
  URN =		{urn:nbn:de:0030-drops-61724},
  doi =		{10.4230/LIPIcs.CONCUR.2016.34},
  annote =	{Keywords: modal logic, fixpoint logic, satisfiability, global caching, coalgebraic logic}
}
Document
Feature-based Visualization of Dense Integral Line Data

Authors: Simon Schröder, Harald Obermaier, Christoph Garth, and Kenneth I. Joy

Published in: OASIcs, Volume 27, Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011


Abstract
Feature-based visualization of flow fields has proven as an effective tool for flow analysis. While most flow visualization techniques operate on vector field data, our visualization techniques make use of a different simulation output: Particle Tracers. Our approach solely relies on integral lines that can be easily obtained from most simulation software. The task is the visualization of dense integral line data. We combine existing methods for streamline visualization, i.e. illumination, transparency, and halos, and add ambient occlusion for lines. But, this only solves one part of the problem: because of the high density of lines, visualization has to fight with occlusion, high frequency noise, and overlaps. As a solution we propose non-automated choices of transfer functions on curve properties that help highlighting important flow features like vortices or turbulent areas. These curve properties resemble some of the original flow properties. With the new combination of existing line drawing methods and the addition of ambient occlusion we improve the visualization of lines by adding better shape and depth cues. The intelligent use of transfer functions on curve properties reduces visual clutter and helps focusing on important features while still retaining context, as demonstrated in the examples given in this work.

Cite as

Simon Schröder, Harald Obermaier, Christoph Garth, and Kenneth I. Joy. Feature-based Visualization of Dense Integral Line Data. In Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011. Open Access Series in Informatics (OASIcs), Volume 27, pp. 71-87, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{schroder_et_al:OASIcs.VLUDS.2011.71,
  author =	{Schr\"{o}der, Simon and Obermaier, Harald and Garth, Christoph and Joy, Kenneth I.},
  title =	{{Feature-based Visualization of Dense Integral Line Data}},
  booktitle =	{Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011},
  pages =	{71--87},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-46-0},
  ISSN =	{2190-6807},
  year =	{2012},
  volume =	{27},
  editor =	{Garth, Christoph and Middel, Ariane and Hagen, Hans},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.VLUDS.2011.71},
  URN =		{urn:nbn:de:0030-drops-37424},
  doi =		{10.4230/OASIcs.VLUDS.2011.71},
  annote =	{Keywords: flow simulation, feature-based visualization, dense lines, ambient occlusion}
}
Document
Preemptive and Non-Preemptive Generalized Min Sum Set Cover

Authors: Sungjin Im, Maxim Sviridenko, and Ruben van der Zwaan

Published in: LIPIcs, Volume 14, 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)


Abstract
In the (non-preemptive) Generalized Min Sum Set Cover Problem, we are given n ground elements and a collection of sets S = {S_1, S_2, ..., S_m} where each set S_i in 2^{[n]} has a positive requirement k(S_i) that has to be fulfilled. We would like to order all elements to minimize the total (weighted) cover time of all sets. The cover time of a set S_i is defined as the first index j in the ordering such that the first j elements in the ordering contain k(S_i) elements in S_i. This problem was introduced by [Azar, Gamzu and Yin, 2009] with interesting motivations in web page ranking and broadcast scheduling. For this problem, constant approximations are known [Bansal, Gupta and Krishnaswamy, 2010][Skutella and Williamson, 2011]. We study the version where preemption is allowed. The difference is that elements can be fractionally scheduled and a set S is covered in the moment when k(S) amount of elements in S are scheduled. We give a 2-approximation for this preemptive problem. Our linear programming and analysis are completely different from [Bansal, Gupta and Krishnaswamy, 2010][Skutella and Williamson, 2011]. We also show that any preemptive solution can be transformed into a non-preemptive one by losing a factor of 6.2 in the objective function. As a byproduct, we obtain an improved 12.4-approximation for the non-preemptive problem.

Cite as

Sungjin Im, Maxim Sviridenko, and Ruben van der Zwaan. Preemptive and Non-Preemptive Generalized Min Sum Set Cover. In 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 14, pp. 465-476, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{im_et_al:LIPIcs.STACS.2012.465,
  author =	{Im, Sungjin and Sviridenko, Maxim and van der Zwaan, Ruben},
  title =	{{Preemptive and Non-Preemptive Generalized Min Sum Set Cover}},
  booktitle =	{29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)},
  pages =	{465--476},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-35-4},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{14},
  editor =	{D\"{u}rr, Christoph and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2012.465},
  URN =		{urn:nbn:de:0030-drops-33991},
  doi =		{10.4230/LIPIcs.STACS.2012.465},
  annote =	{Keywords: Set Cover, Approximation, Preemption, Latency, Average cover time}
}
Document
SANA - Security Analysis in Internet Traffic through Artificial Immune Systems

Authors: Michael Hilker and Christoph Schommer

Published in: OASIcs, Volume 3, Workshop on Trustworthy Software (2006)


Abstract
The Attacks done by Viruses, Worms, Hackers, etc. are a Network Security-Problem in many Organisations. Current Intrusion Detection Systems have significant Disadvantages, e.g. the need of plenty of Computational Power or the Local Installation. Therefore, we introduce a novel Framework for Network Security which is called SANA. SANA contains an artificial Immune System with artificial Cells which perform certain Tasks in order to to support existing systems to better secure the Network against Intrusions. The Advantages of SANA are that it is efficient, adaptive, autonomous, and massively-distributed. In this Article, we describe the Architecture of the artificial Immune System and the Functionality of the Components. We explain briefly the Implementation and discuss Results.

Cite as

Michael Hilker and Christoph Schommer. SANA - Security Analysis in Internet Traffic through Artificial Immune Systems. In Workshop on Trustworthy Software. Open Access Series in Informatics (OASIcs), Volume 3, pp. 1-9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{hilker_et_al:OASIcs.TrustworthySW.2006.694,
  author =	{Hilker, Michael and Schommer, Christoph},
  title =	{{SANA - Security Analysis in Internet Traffic through Artificial Immune Systems}},
  booktitle =	{Workshop on Trustworthy Software},
  pages =	{1--9},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-02-6},
  ISSN =	{2190-6807},
  year =	{2006},
  volume =	{3},
  editor =	{Autexier, Serge and Merz, Stephan and van der Torre, Leon and Wilhelm, Reinhard and Wolper, Pierre},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.TrustworthySW.2006.694},
  URN =		{urn:nbn:de:0030-drops-6949},
  doi =		{10.4230/OASIcs.TrustworthySW.2006.694},
  annote =	{Keywords: Artificial Immune Systems, Network Security, Intrusion Detection, Artificial Cell Communication, Biological-Inspired Computing, Complex Adaptive Syste}
}
Document
Transfinite interpolation for well-definition in error analysis in solid modelling

Authors: Neil Stewart and Malika Zidani

Published in: Dagstuhl Seminar Proceedings, Volume 6021, Reliable Implementation of Real Number Algorithms: Theory and Practice (2006)


Abstract
An overall approach to the problem of error analysis in the context of solid modelling, analogous to the standard forward/backward error analysis of Numerical Analysis, was described in a recent paper by Hoffmann and Stewart. An important subproblem within this overall approach is the well-definition of the sets specified by inconsistent data. These inconsistencies may come from the use of finite-precision real-number arithmetic, from the use of low-degree curves to approximate boundaries, or from terminating an infinite convergent (subdivision) process after only a finite number of steps. An earlier paper, by Andersson and the present authors, showed how to resolve this problem of well-definition, in the context of standard trimmed-NURBS representations, by using the Whitney Extension Theorem. In this paper we will show how an analogous approach can be used in the context of trimmed surfaces based on combined-subdivision representations, such as those proposed by Litke, Levin and Schröder. A further component of the problem of well-definition is ensuring that adjacent patches in a representation do not have extraneous intersections. (Here, "extraneous intersections" refers to intersections, between two patches forming part of the boundary, other than prescribed intersections along a common edge or at a common vertex.) The paper also describes the derivation of a bound for normal vectors that can be used for this purpose. This bound is relevant both in the case of trimmed-NURBS representations, and in the case of combined subdivision with trimming.

Cite as

Neil Stewart and Malika Zidani. Transfinite interpolation for well-definition in error analysis in solid modelling. In Reliable Implementation of Real Number Algorithms: Theory and Practice. Dagstuhl Seminar Proceedings, Volume 6021, pp. 1-12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{stewart_et_al:DagSemProc.06021.9,
  author =	{Stewart, Neil and Zidani, Malika},
  title =	{{Transfinite interpolation for well-definition in error analysis in solid modelling}},
  booktitle =	{Reliable Implementation of Real Number Algorithms: Theory and Practice},
  pages =	{1--12},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6021},
  editor =	{Peter Hertling and Christoph M. Hoffmann and Wolfram Luther and Nathalie Revol},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.06021.9},
  URN =		{urn:nbn:de:0030-drops-7195},
  doi =		{10.4230/DagSemProc.06021.9},
  annote =	{Keywords: Forward/backward error analysis, robustness, well-definition, trimmed NURBS, combined subdivision, trimming, bounds on normals}
}
Document
Dagstuhl-Manifest zur Strategischen Bedeutung des Software Engineering in Deutschland

Authors: Manfred Broy, Matthias Jarke, Manfred Nagl, Hans Dieter Rombach, Armin B. Cremers, Jürgen Ebert, Sabine Glesner, Martin Glinz, Michael Goedicke, Gerhard Goos, Volker Gruhn, Wilhelm Hasselbring, Stefan Jähnichen, Stefan Kowalewski, Bernd J. Krämer, Stefan Leue, Claus Lewerentz, Peter Liggesmeyer, Christoph Lüth, Barbara Paech, Helmut A. Partsch, Ilka Philippow, Lutz Prechelt, Andreas Rausch, Willem-Paul de Roever, Bernhard Rumpe, Gudula Rünger, Wilhelm Schäfer, Kurt Schneider, Andy Schürr, Walter F. Tichy, Bernhard Westfechtel, Wolf Zimmermann, and Albert Zündorf

Published in: Dagstuhl Seminar Proceedings, Volume 5402, Perspectives Workshop (2006)


Abstract
Im Rahmen des Dagstuhl Perspektiven Workshop 05402 "Challenges for Software Engineering Research" haben führende Software Engineering Professoren den derzeitigen Stand der Softwaretechnik in Deutschland charakterisiert und Handlungsempfehlungen für Wirtschaft, Forschung und Politik abgeleitet. Das Manifest fasst die diese Empfehlungen und die Bedeutung und Entwicklung des Fachgebiets prägnant zusammen.

Cite as

Manfred Broy, Matthias Jarke, Manfred Nagl, Hans Dieter Rombach, Armin B. Cremers, Jürgen Ebert, Sabine Glesner, Martin Glinz, Michael Goedicke, Gerhard Goos, Volker Gruhn, Wilhelm Hasselbring, Stefan Jähnichen, Stefan Kowalewski, Bernd J. Krämer, Stefan Leue, Claus Lewerentz, Peter Liggesmeyer, Christoph Lüth, Barbara Paech, Helmut A. Partsch, Ilka Philippow, Lutz Prechelt, Andreas Rausch, Willem-Paul de Roever, Bernhard Rumpe, Gudula Rünger, Wilhelm Schäfer, Kurt Schneider, Andy Schürr, Walter F. Tichy, Bernhard Westfechtel, Wolf Zimmermann, and Albert Zündorf. Dagstuhl-Manifest zur Strategischen Bedeutung des Software Engineering in Deutschland. In Perspectives Workshop. Dagstuhl Seminar Proceedings, Volume 5402, pp. 1-16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{broy_et_al:DagSemProc.05402.1,
  author =	{Broy, Manfred and Jarke, Matthias and Nagl, Manfred and Rombach, Hans Dieter and Cremers, Armin B. and Ebert, J\"{u}rgen and Glesner, Sabine and Glinz, Martin and Goedicke, Michael and Goos, Gerhard and Gruhn, Volker and Hasselbring, Wilhelm and J\"{a}hnichen, Stefan and Kowalewski, Stefan and Kr\"{a}mer, Bernd J. and Leue, Stefan and Lewerentz, Claus and Liggesmeyer, Peter and L\"{u}th, Christoph and Paech, Barbara and Partsch, Helmut A. and Philippow, Ilka and Prechelt, Lutz and Rausch, Andreas and de Roever, Willem-Paul and Rumpe, Bernhard and R\"{u}nger, Gudula and Sch\"{a}fer, Wilhelm and Schneider, Kurt and Sch\"{u}rr, Andy and Tichy, Walter F. and Westfechtel, Bernhard and Zimmermann, Wolf and Z\"{u}ndorf, Albert},
  title =	{{Dagstuhl-Manifest zur Strategischen Bedeutung des Software Engineering in Deutschland}},
  booktitle =	{Perspectives Workshop},
  pages =	{1--16},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{5402},
  editor =	{Manfred Broy and Manfred Nagl and Hans Dieter Rombach and Matthias Jarke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.05402.1},
  URN =		{urn:nbn:de:0030-drops-5853},
  doi =		{10.4230/DagSemProc.05402.1},
  annote =	{Keywords: Software Engineering, Software Technik, Strategie}
}
Document
Feature-driven Emergence of Model Graphs for Object Recognition and Categorization

Authors: Günter Westphal, Christoph von der Malsburg, and Rolf P. Würtz

Published in: Dagstuhl Seminar Proceedings, Volume 6031, Organic Computing - Controlled Emergence (2006)


Abstract
An important requirement for the expression of cognitive structures is the ability to form mental objects by rapidly binding together constituent parts. In this sense, one may conceive the brain's data structure to have the form of graphs whose nodes are labeled with elementary features. These provide a versatile data format with the additional ability to render the structure of any mental object. Because of the multitude of possible object variations the graphs are required to be dynamic. Upon presentation of an image a so-called model graph should rapidly emerge by binding together memorized subgraphs derived from earlier learning examples driven by the image features. In this model, the richness and flexibility of the mind is made possible by a combinatorical game of immense complexity. Consequently, the emergence of model graphs is a laborious task which, in computer vision, has most often been disregarded in favor of employing model graphs tailored to specific object categories like, for instance, faces in frontal pose. Recognition or categorization of arbitrary objects, however, demands dynamic graphs. In this work we propose a form of graph dynamics, which proceeds in two steps. In the first step component classifiers, which decide whether a feature is present in an image, are learned from training images. For processing arbitrary objects, features are small localized grid graphs, so-called parquet graphs, whose nodes are attributed with Gabor amplitudes. Through combination of these classifiers into a linear discriminant that conforms to Linsker's infomax principle a weighted majority voting scheme is implemented. It allows for preselection of salient learning examples, so-called model candidates, and likewise for preselection of categories the object in the presented image supposably belongs to. Each model candidate is verified in a second step using a variant of elastic graph matching, a standard correspondence-based technique for face and object recognition. To further differentiate between model candidates with similar features it is asserted that the features be in similar spatial arrangement for the model to be selected. Model graphs are constructed dynamically by assembling model features into larger graphs according to their spatial arrangement. From the viewpoint of pattern recognition, the presented technique is a combination of a discriminative (feature-based) and a generative (correspondence-based) classifier while the majority voting scheme implemented in the feature-based part is an extension of existing multiple feature subset methods. We report the results of experiments on standard databases for object recognition and categorization. The method achieved high recognition rates on identity, object category, pose, and illumination type. Unlike many other models the presented technique can also cope with varying background, multiple objects, and partial occlusion.

Cite as

Günter Westphal, Christoph von der Malsburg, and Rolf P. Würtz. Feature-driven Emergence of Model Graphs for Object Recognition and Categorization. In Organic Computing - Controlled Emergence. Dagstuhl Seminar Proceedings, Volume 6031, pp. 1-46, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{westphal_et_al:DagSemProc.06031.5,
  author =	{Westphal, G\"{u}nter and von der Malsburg, Christoph and W\"{u}rtz, Rolf P.},
  title =	{{Feature-driven Emergence of Model Graphs for Object Recognition and Categorization}},
  booktitle =	{Organic Computing - Controlled Emergence},
  pages =	{1--46},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6031},
  editor =	{Kirstie Bellman and Peter Hofmann and Christian M\"{u}ller-Schloer and Hartmut Schmeck and Rolf W\"{u}rtz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.06031.5},
  URN =		{urn:nbn:de:0030-drops-5756},
  doi =		{10.4230/DagSemProc.06031.5},
  annote =	{Keywords: Graph matching, recognition, categorization, computer vision, self-organization, emergence}
}
Document
Neural Computing (Dagstuhl Seminar 9445)

Authors: Wolfgang Maass, Christoph von der Malsburg, Eduardo Sontag, and Ingo Wegener

Published in: Dagstuhl Seminar Reports. Dagstuhl Seminar Reports, Volume 1 (2021)


Abstract

Cite as

Wolfgang Maass, Christoph von der Malsburg, Eduardo Sontag, and Ingo Wegener. Neural Computing (Dagstuhl Seminar 9445). Dagstuhl Seminar Report 103, pp. 1-27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (1995)


Copy BibTex To Clipboard

@TechReport{maass_et_al:DagSemRep.103,
  author =	{Maass, Wolfgang and von der Malsburg, Christoph and Sontag, Eduardo and Wegener, Ingo},
  title =	{{Neural Computing (Dagstuhl Seminar 9445)}},
  pages =	{1--27},
  ISSN =	{1619-0203},
  year =	{1995},
  type = 	{Dagstuhl Seminar Report},
  number =	{103},
  institution =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemRep.103},
  URN =		{urn:nbn:de:0030-drops-149912},
  doi =		{10.4230/DagSemRep.103},
}
  • Refine by Author
  • 2 von der Malsburg, Christoph
  • 1 Broy, Manfred
  • 1 Cremers, Armin B.
  • 1 Ebert, Jürgen
  • 1 Egger, Christoph
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Integer programming

  • Refine by Keyword
  • 1 Approximation
  • 1 Artificial Cell Communication
  • 1 Artificial Immune Systems
  • 1 Average cover time
  • 1 Biological-Inspired Computing
  • Show More...

  • Refine by Type
  • 9 document

  • Refine by Publication Year
  • 4 2006
  • 2 2012
  • 1 1995
  • 1 2016
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail