237 Search Results for "K�nig, Daniel"


Document
Max Weight Independent Set in Sparse Graphs with No Long Claws

Authors: Tara Abrishami, Maria Chudnovsky, Marcin Pilipczuk, and Paweł Rzążewski

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We revisit the recent polynomial-time algorithm for the Max Weight Independent Set (MWIS) problem in bounded-degree graphs that do not contain a fixed graph whose every component is a subdivided claw as an induced subgraph [Abrishami, Chudnovsky, Dibek, Rzążewski, SODA 2022]. First, we show that with an arguably simpler approach we can obtain a faster algorithm with running time n^{𝒪(Δ²)}, where n is the number of vertices of the instance and Δ is the maximum degree. Then we combine our technique with known results concerning tree decompositions and provide a polynomial-time algorithm for MWIS in graphs excluding a fixed graph whose every component is a subdivided claw as an induced subgraph, and a fixed biclique as a subgraph.

Cite as

Tara Abrishami, Maria Chudnovsky, Marcin Pilipczuk, and Paweł Rzążewski. Max Weight Independent Set in Sparse Graphs with No Long Claws. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 4:1-4:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abrishami_et_al:LIPIcs.STACS.2024.4,
  author =	{Abrishami, Tara and Chudnovsky, Maria and Pilipczuk, Marcin and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Max Weight Independent Set in Sparse Graphs with No Long Claws}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{4:1--4:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.4},
  URN =		{urn:nbn:de:0030-drops-197148},
  doi =		{10.4230/LIPIcs.STACS.2024.4},
  annote =	{Keywords: Max Weight Independent Set, subdivided claw, hereditary classes}
}
Document
On a Hierarchy of Spectral Invariants for Graphs

Authors: V. Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We consider a hierarchy of graph invariants that naturally extends the spectral invariants defined by Fürer (Lin. Alg. Appl. 2010) based on the angles formed by the set of standard basis vectors and their projections onto eigenspaces of the adjacency matrix. We provide a purely combinatorial characterization of this hierarchy in terms of the walk counts. This allows us to give a complete answer to Fürer’s question about the strength of his invariants in distinguishing non-isomorphic graphs in comparison to the 2-dimensional Weisfeiler-Leman algorithm, extending the recent work of Rattan and Seppelt (SODA 2023). As another application of the characterization, we prove that almost all graphs are determined up to isomorphism in terms of the spectrum and the angles, which is of interest in view of the long-standing open problem whether almost all graphs are determined by their eigenvalues alone. Finally, we describe the exact relationship between the hierarchy and the Weisfeiler-Leman algorithms for small dimensions, as also some other important spectral characteristics of a graph such as the generalized and the main spectra.

Cite as

V. Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On a Hierarchy of Spectral Invariants for Graphs. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arvind_et_al:LIPIcs.STACS.2024.6,
  author =	{Arvind, V. and Fuhlbr\"{u}ck, Frank and K\"{o}bler, Johannes and Verbitsky, Oleg},
  title =	{{On a Hierarchy of Spectral Invariants for Graphs}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.6},
  URN =		{urn:nbn:de:0030-drops-197166},
  doi =		{10.4230/LIPIcs.STACS.2024.6},
  annote =	{Keywords: Graph Isomorphism, spectra of graphs, combinatorial refinement, strongly regular graphs}
}
Document
Computing Twin-Width Parameterized by the Feedback Edge Number

Authors: Jakub Balabán, Robert Ganian, and Mathis Rocton

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The problem of whether and how one can compute the twin-width of a graph - along with an accompanying contraction sequence - lies at the forefront of the area of algorithmic model theory. While significant effort has been aimed at obtaining a fixed-parameter approximation for the problem when parameterized by twin-width, here we approach the question from a different perspective and consider whether one can obtain (near-)optimal contraction sequences under a larger parameterization, notably the feedback edge number k. As our main contributions, under this parameterization we obtain (1) a linear bikernel for the problem of either computing a 2-contraction sequence or determining that none exists and (2) an approximate fixed-parameter algorithm which computes an 𝓁-contraction sequence (for an arbitrary specified 𝓁) or determines that the twin-width of the input graph is at least 𝓁. These algorithmic results rely on newly obtained insights into the structure of optimal contraction sequences, and as a byproduct of these we also slightly tighten the bound on the twin-width of graphs with small feedback edge number.

Cite as

Jakub Balabán, Robert Ganian, and Mathis Rocton. Computing Twin-Width Parameterized by the Feedback Edge Number. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 7:1-7:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{balaban_et_al:LIPIcs.STACS.2024.7,
  author =	{Balab\'{a}n, Jakub and Ganian, Robert and Rocton, Mathis},
  title =	{{Computing Twin-Width Parameterized by the Feedback Edge Number}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{7:1--7:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.7},
  URN =		{urn:nbn:de:0030-drops-197170},
  doi =		{10.4230/LIPIcs.STACS.2024.7},
  annote =	{Keywords: twin-width, parameterized complexity, kernelization, feedback edge number}
}
Document
Expressive Quantale-Valued Logics for Coalgebras: An Adjunction-Based Approach

Authors: Harsh Beohar, Sebastian Gurke, Barbara König, Karla Messing, Jonas Forster, Lutz Schröder, and Paul Wild

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We address the task of deriving fixpoint equations from modal logics characterizing behavioural equivalences and metrics (summarized under the term conformances). We rely on an earlier work that obtains Hennessy-Milner theorems as corollaries to a fixpoint preservation property along Galois connections between suitable lattices. We instantiate this to the setting of coalgebras, in which we spell out the compatibility property ensuring that we can derive a behaviour function whose greatest fixpoint coincides with the logical conformance. We then concentrate on the linear-time case, for which we study coalgebras based on the machine functor living in Eilenberg-Moore categories, a scenario for which we obtain a particularly simple logic and fixpoint equation. The theory is instantiated to concrete examples, both in the branching-time case (bisimilarity and behavioural metrics) and in the linear-time case (trace equivalences and trace distances).

Cite as

Harsh Beohar, Sebastian Gurke, Barbara König, Karla Messing, Jonas Forster, Lutz Schröder, and Paul Wild. Expressive Quantale-Valued Logics for Coalgebras: An Adjunction-Based Approach. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 10:1-10:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{beohar_et_al:LIPIcs.STACS.2024.10,
  author =	{Beohar, Harsh and Gurke, Sebastian and K\"{o}nig, Barbara and Messing, Karla and Forster, Jonas and Schr\"{o}der, Lutz and Wild, Paul},
  title =	{{Expressive Quantale-Valued Logics for Coalgebras: An Adjunction-Based Approach}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{10:1--10:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.10},
  URN =		{urn:nbn:de:0030-drops-197203},
  doi =		{10.4230/LIPIcs.STACS.2024.10},
  annote =	{Keywords: modal logics, coalgebras, behavioural equivalences, behavioural metrics, linear-time semantics, Eilenberg-Moore categories}
}
Document
Modal Logic Is More Succinct Iff Bi-Implication Is Available in Some Form

Authors: Christoph Berkholz, Dietrich Kuske, and Christian Schwarz

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Is it possible to write significantly smaller formulae, when using more Boolean operators in addition to the De Morgan basis (and, or, not)? For propositional logic a negative answer was given by Pratt: every formula with additional operators can be translated to the De Morgan basis with only polynomial increase in size. Surprisingly, for modal logic the picture is different: we show that adding bi-implication allows to write exponentially smaller formulae. Moreover, we provide a complete classification of finite sets of Boolean operators showing they are either of no help (allow polynomial translations to the De Morgan basis) or can express properties as succinct as modal logic with additional bi-implication. More precisely, these results are shown for the modal logic T (and therefore for K). We complement this result showing that the modal logic S5 behaves as propositional logic: no additional Boolean operators make it possible to write significantly smaller formulae.

Cite as

Christoph Berkholz, Dietrich Kuske, and Christian Schwarz. Modal Logic Is More Succinct Iff Bi-Implication Is Available in Some Form. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berkholz_et_al:LIPIcs.STACS.2024.12,
  author =	{Berkholz, Christoph and Kuske, Dietrich and Schwarz, Christian},
  title =	{{Modal Logic Is More Succinct Iff Bi-Implication Is Available in Some Form}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.12},
  URN =		{urn:nbn:de:0030-drops-197228},
  doi =		{10.4230/LIPIcs.STACS.2024.12},
  annote =	{Keywords: succinctness, modal logic}
}
Document
Contributions to the Domino Problem: Seeding, Recurrence and Satisfiability

Authors: Nicolás Bitar

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We study the seeded domino problem, the recurring domino problem and the k-SAT problem on finitely generated groups. These problems are generalization of their original versions on ℤ² that were shown to be undecidable using the domino problem. We show that the seeded and recurring domino problems on a group are invariant under changes in the generating set, are many-one reduced from the respective problems on subgroups, and are positive equivalent to the problems on finite index subgroups. This leads to showing that the recurring domino problem is decidable for free groups. Coupled with the invariance properties, we conjecture that the only groups in which the seeded and recurring domino problems are decidable are virtually free groups. In the case of the k-SAT problem, we introduce a new generalization that is compatible with decision problems on finitely generated groups. We show that the subgroup membership problem many-one reduces to the 2-SAT problem, that in certain cases the k-SAT problem many one reduces to the domino problem, and finally that the domino problem reduces to 3-SAT for the class of scalable groups.

Cite as

Nicolás Bitar. Contributions to the Domino Problem: Seeding, Recurrence and Satisfiability. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 17:1-17:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bitar:LIPIcs.STACS.2024.17,
  author =	{Bitar, Nicol\'{a}s},
  title =	{{Contributions to the Domino Problem: Seeding, Recurrence and Satisfiability}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{17:1--17:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.17},
  URN =		{urn:nbn:de:0030-drops-197275},
  doi =		{10.4230/LIPIcs.STACS.2024.17},
  annote =	{Keywords: Tilings, Domino problem, SAT, Computability, Finitely generated groups}
}
Document
Local Certification of Local Properties: Tight Bounds, Trade-Offs and New Parameters

Authors: Nicolas Bousquet, Laurent Feuilloley, and Sébastien Zeitoun

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Local certification is a distributed mechanism enabling the nodes of a network to check the correctness of the current configuration, thanks to small pieces of information called certificates. For many classic global properties, like checking the acyclicity of the network, the optimal size of the certificates depends on the size of the network, n. In this paper, we focus on properties for which the size of the certificates does not depend on n but on other parameters. We focus on three such important properties and prove tight bounds for all of them. Namely, we prove that the optimal certification size is: Θ(log k) for k-colorability (and even exactly ⌈ log k ⌉ bits in the anonymous model while previous works had only proved a 2-bit lower bound); (1/2)log t+o(log t) for dominating sets at distance t (an unexpected and tighter-than-usual bound) ; and Θ(log Δ) for perfect matching in graphs of maximum degree Δ (the first non-trivial bound parameterized by Δ). We also prove some surprising upper bounds, for example, certifying the existence of a perfect matching in a planar graph can be done with only two bits. In addition, we explore various specific cases for these properties, in particular improving our understanding of the trade-off between locality of the verification and certificate size.

Cite as

Nicolas Bousquet, Laurent Feuilloley, and Sébastien Zeitoun. Local Certification of Local Properties: Tight Bounds, Trade-Offs and New Parameters. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.STACS.2024.21,
  author =	{Bousquet, Nicolas and Feuilloley, Laurent and Zeitoun, S\'{e}bastien},
  title =	{{Local Certification of Local Properties: Tight Bounds, Trade-Offs and New Parameters}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.21},
  URN =		{urn:nbn:de:0030-drops-197317},
  doi =		{10.4230/LIPIcs.STACS.2024.21},
  annote =	{Keywords: Local certification, local properties, proof-labeling schemes, locally checkable proofs, optimal certification size, colorability, dominating set, perfect matching, fault-tolerance, graph structure}
}
Document
Fault-tolerant k-Supplier with Outliers

Authors: Deeparnab Chakrabarty, Luc Cote, and Ankita Sarkar

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We present approximation algorithms for the Fault-tolerant k-Supplier with Outliers (FkSO) problem. This is a common generalization of two known problems - k-Supplier with Outliers, and Fault-tolerant k-Supplier - each of which generalize the well-known k-Supplier problem. In the k-Supplier problem the goal is to serve n clients C, by opening k facilities from a set of possible facilities F; the objective function is the farthest that any client must travel to access an open facility. In FkSO, each client v has a fault-tolerance 𝓁_v, and now desires 𝓁_v facilities to serve it; so each client v’s contribution to the objective function is now its distance to the 𝓁_v^th closest open facility. Furthermore, we are allowed to choose m clients that we will serve, and only those clients contribute to the objective function, while the remaining n-m are considered outliers. Our main result is a (4t-1)-approximation for the FkSO problem, where t is the number of distinct values of 𝓁_v that appear in the instance. At t = 1, i.e. in the case where the 𝓁_v’s are uniformly some 𝓁, this yields a 3-approximation, improving upon the 11-approximation given for the uniform case by Inamdar and Varadarajan [2020], who also introduced the problem. Our result for the uniform case matches tight 3-approximations that exist for k-Supplier, k-Supplier with Outliers, and Fault-tolerant k-Supplier. Our key technical contribution is an application of the round-or-cut schema to FkSO. Guided by an LP relaxation, we reduce to a simpler optimization problem, which we can solve to obtain distance bounds for the "round" step, and valid inequalities for the "cut" step. By varying how we reduce to the simpler problem, we get varying distance bounds - we include a variant that gives a (2^t + 1)-approximation, which is better for t ∈ {2,3}. In addition, for t = 1, we give a more straightforward application of round-or-cut, yielding a 3-approximation that is much simpler than our general algorithm.

Cite as

Deeparnab Chakrabarty, Luc Cote, and Ankita Sarkar. Fault-tolerant k-Supplier with Outliers. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 23:1-23:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chakrabarty_et_al:LIPIcs.STACS.2024.23,
  author =	{Chakrabarty, Deeparnab and Cote, Luc and Sarkar, Ankita},
  title =	{{Fault-tolerant k-Supplier with Outliers}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{23:1--23:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.23},
  URN =		{urn:nbn:de:0030-drops-197336},
  doi =		{10.4230/LIPIcs.STACS.2024.23},
  annote =	{Keywords: Clustering, approximation algorithms, round-or-cut}
}
Document
Approximate Circular Pattern Matching Under Edit Distance

Authors: Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In the k-Edit Circular Pattern Matching (k-Edit CPM) problem, we are given a length-n text T, a length-m pattern P, and a positive integer threshold k, and we are to report all starting positions of the substrings of T that are at edit distance at most k from some cyclic rotation of P. In the decision version of the problem, we are to check if any such substring exists. Very recently, Charalampopoulos et al. [ESA 2022] presented 𝒪(nk²)-time and 𝒪(nk log³ k)-time solutions for the reporting and decision versions of k-Edit CPM, respectively. Here, we show that the reporting and decision versions of k-Edit CPM can be solved in 𝒪(n+(n/m) k⁶) time and 𝒪(n+(n/m) k⁵ log³ k) time, respectively, thus obtaining the first algorithms with a complexity of the type 𝒪(n+(n/m) poly(k)) for this problem. Notably, our algorithms run in 𝒪(n) time when m = Ω(k⁶) and are superior to the previous respective solutions when m = ω(k⁴). We provide a meta-algorithm that yields efficient algorithms in several other interesting settings, such as when the strings are given in a compressed form (as straight-line programs), when the strings are dynamic, or when we have a quantum computer. We obtain our solutions by exploiting the structure of approximate circular occurrences of P in T, when T is relatively short w.r.t. P. Roughly speaking, either the starting positions of approximate occurrences of rotations of P form 𝒪(k⁴) intervals that can be computed efficiently, or some rotation of P is almost periodic (is at a small edit distance from a string with small period). Dealing with the almost periodic case is the most technically demanding part of this work; we tackle it using properties of locked fragments (originating from [Cole and Hariharan, SICOMP 2002]).

Cite as

Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba. Approximate Circular Pattern Matching Under Edit Distance. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 24:1-24:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{charalampopoulos_et_al:LIPIcs.STACS.2024.24,
  author =	{Charalampopoulos, Panagiotis and Pissis, Solon P. and Radoszewski, Jakub and Rytter, Wojciech and Wale\'{n}, Tomasz and Zuba, Wiktor},
  title =	{{Approximate Circular Pattern Matching Under Edit Distance}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{24:1--24:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.24},
  URN =		{urn:nbn:de:0030-drops-197346},
  doi =		{10.4230/LIPIcs.STACS.2024.24},
  annote =	{Keywords: circular pattern matching, approximate pattern matching, edit distance}
}
Document
Depth-3 Circuit Lower Bounds for k-OV

Authors: Tameem Choudhury and Karteek Sreenivasaiah

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The 2-Orthogonal Vectors (2-OV) problem is the following: given two tuples A and B of n Boolean vectors, each of dimension d, decide if there exist vectors u ∈ A, and v ∈ B, such that u and v are orthogonal. This problem, and its generalization k-OV defined analogously for k tuples, are central problems in the area of fine-grained complexity. One of the major conjectures in fine-grained complexity is that k-OV cannot be solved by a randomised algorithm in n^{k-ε}poly(d) time for any constant ε > 0. In this paper, we are interested in unconditional lower bounds against k-OV, but for weaker models of computation than the general Turing Machine. In particular, we are interested in circuit lower bounds to computing k-OV by Boolean circuit families of depth 3 of the form OR-AND-OR, or equivalently, a disjunction of CNFs. We show that for all k ≤ d, any disjunction of t-CNFs computing k-OV requires size Ω((n/t)^k). In particular, when k is a constant, any disjunction of k-CNFs computing k-OV needs to use Ω(n^k) CNFs. This matches the brute-force construction, and for each fixed k > 2, this is the first unconditional Ω(n^k) lower bound against k-OV for a computation model that can compute it in size O(n^k). Our results partially resolve a conjecture by Kane and Williams [Daniel M. Kane and Richard Ryan Williams, 2019] (page 12, conjecture 10) about depth-3 AC⁰ circuits computing 2-OV. As a secondary result, we show an exponential lower bound on the size of AND∘OR∘AND circuits computing 2-OV when d is very large. Since 2-OV reduces to k-OV by projections trivially, this lower bound works against k-OV as well.

Cite as

Tameem Choudhury and Karteek Sreenivasaiah. Depth-3 Circuit Lower Bounds for k-OV. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{choudhury_et_al:LIPIcs.STACS.2024.25,
  author =	{Choudhury, Tameem and Sreenivasaiah, Karteek},
  title =	{{Depth-3 Circuit Lower Bounds for k-OV}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.25},
  URN =		{urn:nbn:de:0030-drops-197359},
  doi =		{10.4230/LIPIcs.STACS.2024.25},
  annote =	{Keywords: fine grained complexity, k-OV, circuit lower bounds, depth-3 circuits}
}
Document
On the Exact Matching Problem in Dense Graphs

Authors: Nicolas El Maalouly, Sebastian Haslebacher, and Lasse Wulf

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In the Exact Matching problem, we are given a graph whose edges are colored red or blue and the task is to decide for a given integer k, if there is a perfect matching with exactly k red edges. Since 1987 it is known that the Exact Matching Problem can be solved in randomized polynomial time. Despite numerous efforts, it is still not known today whether a deterministic polynomial-time algorithm exists as well. In this paper, we make substantial progress by solving the problem for a multitude of different classes of dense graphs. We solve the Exact Matching problem in deterministic polynomial time for complete r-partite graphs, for unit interval graphs, for bipartite unit interval graphs, for graphs of bounded neighborhood diversity, for chain graphs, and for graphs without a complete bipartite t-hole. We solve the problem in quasi-polynomial time for Erdős-Rényi random graphs G(n, 1/2). We also reprove an earlier result for bounded independence number/bipartite independence number. We use two main tools to obtain these results: A local search algorithm as well as a generalization of an earlier result by Karzanov.

Cite as

Nicolas El Maalouly, Sebastian Haslebacher, and Lasse Wulf. On the Exact Matching Problem in Dense Graphs. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 33:1-33:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{elmaalouly_et_al:LIPIcs.STACS.2024.33,
  author =	{El Maalouly, Nicolas and Haslebacher, Sebastian and Wulf, Lasse},
  title =	{{On the Exact Matching Problem in Dense Graphs}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{33:1--33:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.33},
  URN =		{urn:nbn:de:0030-drops-197437},
  doi =		{10.4230/LIPIcs.STACS.2024.33},
  annote =	{Keywords: Exact Matching, Perfect Matching, Red-Blue Matching, Bounded Color Matching, Local Search, Derandomization}
}
Document
Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs

Authors: Marek Filakovský, Tamio-Vesa Nakajima, Jakub Opršal, Gianluca Tasinato, and Uli Wagner

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
A linearly ordered (LO) k-colouring of a hypergraph is a colouring of its vertices with colours 1, … , k such that each edge contains a unique maximal colour. Deciding whether an input hypergraph admits LO k-colouring with a fixed number of colours is NP-complete (and in the special case of graphs, LO colouring coincides with the usual graph colouring). Here, we investigate the complexity of approximating the "linearly ordered chromatic number" of a hypergraph. We prove that the following promise problem is NP-complete: Given a 3-uniform hypergraph, distinguish between the case that it is LO 3-colourable, and the case that it is not even LO 4-colourable. We prove this result by a combination of algebraic, topological, and combinatorial methods, building on and extending a topological approach for studying approximate graph colouring introduced by Krokhin, Opršal, Wrochna, and Živný (2023).

Cite as

Marek Filakovský, Tamio-Vesa Nakajima, Jakub Opršal, Gianluca Tasinato, and Uli Wagner. Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 34:1-34:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{filakovsky_et_al:LIPIcs.STACS.2024.34,
  author =	{Filakovsk\'{y}, Marek and Nakajima, Tamio-Vesa and Opr\v{s}al, Jakub and Tasinato, Gianluca and Wagner, Uli},
  title =	{{Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{34:1--34:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.34},
  URN =		{urn:nbn:de:0030-drops-197445},
  doi =		{10.4230/LIPIcs.STACS.2024.34},
  annote =	{Keywords: constraint satisfaction problem, hypergraph colouring, promise problem, topological methods}
}
Document
The 2-Attractor Problem Is NP-Complete

Authors: Janosch Fuchs and Philip Whittington

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
A k-attractor is a combinatorial object unifying dictionary-based compression. It allows to compare the repetitiveness measures of different dictionary compressors such as Lempel-Ziv 77, the Burrows-Wheeler transform, straight line programs and macro schemes. For a string T ∈ Σⁿ, the k-attractor is defined as a set of positions Γ ⊆ [1,n], such that every distinct substring of length at most k is covered by at least one of the selected positions. Thus, if a substring occurs multiple times in T, one position suffices to cover it. A 1-attractor is easily computed in linear time, while Kempa and Prezza [STOC 2018] have shown that for k ≥ 3, it is NP-complete to compute the smallest k-attractor by a reduction from k-set cover. The main result of this paper answers the open question for the complexity of the 2-attractor problem, showing that the problem remains NP-complete. Kempa and Prezza’s proof for k ≥ 3 also reduces the 2-attractor problem to the 2-set cover problem, which is equivalent to edge cover, but that does not fully capture the complexity of the 2-attractor problem. For this reason, we extend edge cover by a color function on the edges, yielding the colorful edge cover problem. Any edge cover must then satisfy the additional constraint that each color is represented. This extension raises the complexity such that colorful edge cover becomes NP-complete while also more precisely modeling the 2-attractor problem. We obtain a reduction showing k-attractor to be NP-complete and APX-hard for any k ≥ 2.

Cite as

Janosch Fuchs and Philip Whittington. The 2-Attractor Problem Is NP-Complete. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 35:1-35:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fuchs_et_al:LIPIcs.STACS.2024.35,
  author =	{Fuchs, Janosch and Whittington, Philip},
  title =	{{The 2-Attractor Problem Is NP-Complete}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{35:1--35:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.35},
  URN =		{urn:nbn:de:0030-drops-197457},
  doi =		{10.4230/LIPIcs.STACS.2024.35},
  annote =	{Keywords: String attractors, dictionary compression, computational complexity}
}
Document
The AC⁰-Complexity of Visibly Pushdown Languages

Authors: Stefan Göller and Nathan Grosshans

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We study the question of which visibly pushdown languages (VPLs) are in the complexity class AC⁰ and how to effectively decide this question. Our contribution is to introduce a particular subclass of one-turn VPLs, called intermediate VPLs, for which the raised question is entirely unclear: to the best of our knowledge our research community is unaware of containment or non-containment in AC⁰ for any language in our newly introduced class. Our main result states that there is an algorithm that, given a visibly pushdown automaton, correctly outputs exactly one of the following: that its language L is in AC⁰, some m ≥ 2 such that MODₘ (the words over {0,1} having a number of 1’s divisible by m) is constant-depth reducible to L (implying that L is not in AC⁰), or a finite disjoint union of intermediate VPLs that L is constant-depth equivalent to. In the latter of the three cases one can moreover effectively compute k,l ∈ ℕ_{> 0} with k≠l such that the concrete intermediate VPL L(S → ε ∣ ac^{k-1}Sb₁ ∣ ac^{l-1}Sb₂) is constant-depth reducible to the language L. Due to their particular nature we conjecture that either all intermediate VPLs are in AC⁰ or all are not. As a corollary of our main result we obtain that in case the input language is a visibly counter language our algorithm can effectively determine if it is in AC⁰ - hence our main result generalizes a result by Krebs et al. stating that it is decidable if a given visibly counter language is in AC⁰ (when restricted to well-matched words). For our proofs we revisit so-called Ext-algebras (introduced by Czarnetzki et al.), which are closely related to forest algebras (introduced by Bojańczyk and Walukiewicz), and use Green’s relations.

Cite as

Stefan Göller and Nathan Grosshans. The AC⁰-Complexity of Visibly Pushdown Languages. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 38:1-38:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{goller_et_al:LIPIcs.STACS.2024.38,
  author =	{G\"{o}ller, Stefan and Grosshans, Nathan},
  title =	{{The AC⁰-Complexity of Visibly Pushdown Languages}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{38:1--38:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.38},
  URN =		{urn:nbn:de:0030-drops-197483},
  doi =		{10.4230/LIPIcs.STACS.2024.38},
  annote =	{Keywords: Visibly pushdown languages, Circuit Complexity, AC0}
}
Document
A Faster Algorithm for Vertex Cover Parameterized by Solution Size

Authors: David G. Harris and N. S. Narayanaswamy

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We describe a new algorithm for vertex cover with runtime O^*(1.25284^k), where k is the size of the desired solution and O^* hides polynomial factors in the input size. This improves over the previous runtime of O^*(1.2738^k) due to Chen, Kanj, & Xia (2010) standing for more than a decade. The key to our algorithm is to use a measure which simultaneously tracks k as well as the optimal value λ of the vertex cover LP relaxation. This allows us to make use of prior algorithms for Maximum Independent Set in bounded-degree graphs and Above-Guarantee Vertex Cover. The main step in the algorithm is to branch on high-degree vertices, while ensuring that both k and μ = k - λ are decreased at each step. There can be local obstructions in the graph that prevent μ from decreasing in this process; we develop a number of novel branching steps to handle these situations.

Cite as

David G. Harris and N. S. Narayanaswamy. A Faster Algorithm for Vertex Cover Parameterized by Solution Size. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 40:1-40:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{harris_et_al:LIPIcs.STACS.2024.40,
  author =	{Harris, David G. and Narayanaswamy, N. S.},
  title =	{{A Faster Algorithm for Vertex Cover Parameterized by Solution Size}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{40:1--40:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.40},
  URN =		{urn:nbn:de:0030-drops-197508},
  doi =		{10.4230/LIPIcs.STACS.2024.40},
  annote =	{Keywords: Vertex cover, FPT, Graph algorithm}
}
  • Refine by Author
  • 49 Lokshtanov, Daniel
  • 41 Saurabh, Saket
  • 22 Marx, Dániel
  • 16 Fomin, Fedor V.
  • 16 Paulusma, Daniël
  • Show More...

  • Refine by Classification
  • 28 Theory of computation → Parameterized complexity and exact algorithms
  • 25 Theory of computation → Graph algorithms analysis
  • 24 Theory of computation → Design and analysis of algorithms
  • 20 Theory of computation → Fixed parameter tractability
  • 15 Theory of computation → Computational geometry
  • Show More...

  • Refine by Keyword
  • 17 parameterized complexity
  • 10 fixed-parameter tractability
  • 10 kernelization
  • 9 Parameterized Complexity
  • 9 treewidth
  • Show More...

  • Refine by Type
  • 237 document

  • Refine by Publication Year
  • 51 2020
  • 37 2018
  • 25 2019
  • 23 2024
  • 20 2017
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail