3 Search Results for "Kermarrec, Anne-Marie"


Document
On the Inherent Anonymity of Gossiping

Authors: Rachid Guerraoui, Anne-Marie Kermarrec, Anastasiia Kucherenko, Rafael Pinot, and Sasha Voitovych

Published in: LIPIcs, Volume 281, 37th International Symposium on Distributed Computing (DISC 2023)


Abstract
Detecting the source of a gossip is a critical issue, related to identifying patient zero in an epidemic, or the origin of a rumor in a social network. Although it is widely acknowledged that random and local gossip communications make source identification difficult, there exists no general quantification of the level of anonymity provided to the source. This paper presents a principled method based on ε-differential privacy to analyze the inherent source anonymity of gossiping for a large class of graphs. First, we quantify the fundamental limit of source anonymity any gossip protocol can guarantee in an arbitrary communication graph. In particular, our result indicates that when the graph has poor connectivity, no gossip protocol can guarantee any meaningful level of differential privacy. This prompted us to further analyze graphs with controlled connectivity. We prove on these graphs that a large class of gossip protocols, namely cobra walks, offers tangible differential privacy guarantees to the source. In doing so, we introduce an original proof technique based on the reduction of a gossip protocol to what we call a random walk with probabilistic die out. This proof technique is of independent interest to the gossip community and readily extends to other protocols inherited from the security community, such as the Dandelion protocol. Interestingly, our tight analysis precisely captures the trade-off between dissemination time of a gossip protocol and its source anonymity.

Cite as

Rachid Guerraoui, Anne-Marie Kermarrec, Anastasiia Kucherenko, Rafael Pinot, and Sasha Voitovych. On the Inherent Anonymity of Gossiping. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 24:1-24:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{guerraoui_et_al:LIPIcs.DISC.2023.24,
  author =	{Guerraoui, Rachid and Kermarrec, Anne-Marie and Kucherenko, Anastasiia and Pinot, Rafael and Voitovych, Sasha},
  title =	{{On the Inherent Anonymity of Gossiping}},
  booktitle =	{37th International Symposium on Distributed Computing (DISC 2023)},
  pages =	{24:1--24:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-301-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{281},
  editor =	{Oshman, Rotem},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.24},
  URN =		{urn:nbn:de:0030-drops-191504},
  doi =		{10.4230/LIPIcs.DISC.2023.24},
  annote =	{Keywords: Gossip protocol, Source anonymity, Differential privacy}
}
Document
Keynote Talk
Recommenders: from the Lab to the Wild (Keynote Talk)

Authors: Anne-Marie Kermarrec

Published in: LIPIcs, Volume 91, 31st International Symposium on Distributed Computing (DISC 2017)


Abstract
Recommenders are ubiquitous on the Internet today: they tell you which book to read, which movie you should watch, predict your next holiday destination, give you advices on restaurants and hotels, they are even responsible for the posts that you see on your favorite social media and potentially greatly influence your friendship on social networks. While many approaches exist, collaborative filtering is one of the most popular approaches to build online recommenders that provide users with content that matches their interest. Interestingly, the very notion of users can be general and span actual humans or software applications. Recommenders come with many challenges beyond the quality of the recommendations. One of the most prominent ones is their ability to scale to a large number of users and a growing volume of data to provide real-time recommendations introducing many system challenges. Another challenge is related to privacy awareness: while recommenders rely on the very fact that users give away information about themselves, this potentially raises some privacy concerns. In this talk, I will focus on the challenges associated to building efficient, scalable and privacy-aware recommenders.

Cite as

Anne-Marie Kermarrec. Recommenders: from the Lab to the Wild (Keynote Talk). In 31st International Symposium on Distributed Computing (DISC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 91, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{kermarrec:LIPIcs.DISC.2017.2,
  author =	{Kermarrec, Anne-Marie},
  title =	{{Recommenders: from the Lab to the Wild}},
  booktitle =	{31st International Symposium on Distributed Computing (DISC 2017)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-053-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{91},
  editor =	{Richa, Andr\'{e}a},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2017.2},
  URN =		{urn:nbn:de:0030-drops-79652},
  doi =		{10.4230/LIPIcs.DISC.2017.2},
  annote =	{Keywords: Recommenders, Collaborative filtering, Distributed systems}
}
Document
Bounds on the Voter Model in Dynamic Networks

Authors: Petra Berenbrink, George Giakkoupis, Anne-Marie Kermarrec, and Frederik Mallmann-Trenn

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
In the voter model, each node of a graph has an opinion, and in every round each node chooses independently a random neighbour and adopts its opinion. We are interested in the consensus time, which is the first point in time where all nodes have the same opinion. We consider dynamic graphs in which the edges are rewired in every round (by an adversary) giving rise to the graph sequence G_1, G_2, ..., where we assume that G_i has conductance at least phi_i. We assume that the degrees of nodes don't change over time as one can show that the consensus time can become super-exponential otherwise. In the case of a sequence of d-regular graphs, we obtain asymptotically tight results. Even for some static graphs, such as the cycle, our results improve the state of the art. Here we show that the expected number of rounds until all nodes have the same opinion is bounded by O(m/(d_{min}*phi)), for any graph with m edges, conductance phi, and degrees at least d_{min}. In addition, we consider a biased dynamic voter model, where each opinion i is associated with a probability P_i, and when a node chooses a neighbour with that opinion, it adopts opinion i with probability P_i (otherwise the node keeps its current opinion). We show for any regular dynamic graph, that if there is an epsilon > 0 difference between the highest and second highest opinion probabilities, and at least Omega(log(n)) nodes have initially the opinion with the highest probability, then all nodes adopt w.h.p. that opinion. We obtain a bound on the convergence time, which becomes O(log(n)/phi) for static graphs.

Cite as

Petra Berenbrink, George Giakkoupis, Anne-Marie Kermarrec, and Frederik Mallmann-Trenn. Bounds on the Voter Model in Dynamic Networks. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 146:1-146:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{berenbrink_et_al:LIPIcs.ICALP.2016.146,
  author =	{Berenbrink, Petra and Giakkoupis, George and Kermarrec, Anne-Marie and Mallmann-Trenn, Frederik},
  title =	{{Bounds on the Voter Model in Dynamic Networks}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{146:1--146:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.146},
  URN =		{urn:nbn:de:0030-drops-62901},
  doi =		{10.4230/LIPIcs.ICALP.2016.146},
  annote =	{Keywords: Voting, Distributed Computing, Conductance, Dynamic Graphs, Consensus}
}
  • Refine by Author
  • 3 Kermarrec, Anne-Marie
  • 1 Berenbrink, Petra
  • 1 Giakkoupis, George
  • 1 Guerraoui, Rachid
  • 1 Kucherenko, Anastasiia
  • Show More...

  • Refine by Classification
  • 1 Security and privacy → Privacy-preserving protocols

  • Refine by Keyword
  • 1 Collaborative filtering
  • 1 Conductance
  • 1 Consensus
  • 1 Differential privacy
  • 1 Distributed Computing
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2016
  • 1 2017
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail