4 Search Results for "Khalimov, Ayrat"


Document
Track B: Automata, Logic, Semantics, and Theory of Programming
A Generic Solution to Register-Bounded Synthesis with an Application to Discrete Orders

Authors: Léo Exibard, Emmanuel Filiot, and Ayrat Khalimov

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We study synthesis of reactive systems interacting with environments using an infinite data domain. A popular formalism for specifying and modelling such systems is register automata and transducers. They extend finite-state automata by adding registers to store data values and to compare the incoming data values against stored ones. Synthesis from nondeterministic or universal register automata is undecidable in general. However, its register-bounded variant, where additionally a bound on the number of registers in a sought transducer is given, is known to be decidable for universal register automata which can compare data for equality, i.e., for data domain (ℕ, =). This paper extends the decidability border to the domain (ℕ, <) of natural numbers with linear order. Our solution is generic: we define a sufficient condition on data domains (regular approximability) for decidability of register-bounded synthesis. The condition is satisfied by natural data domains like (ℕ, <). It allows one to use simple language-theoretic arguments and avoid technical game-theoretic reasoning. Further, by defining a generic notion of reducibility between data domains, we show the decidability of synthesis in the domain (ℕ^d, <^d) of tuples of numbers equipped with the component-wise partial order and in the domain (Σ^*,≺) of finite strings with the prefix relation.

Cite as

Léo Exibard, Emmanuel Filiot, and Ayrat Khalimov. A Generic Solution to Register-Bounded Synthesis with an Application to Discrete Orders. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 122:1-122:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{exibard_et_al:LIPIcs.ICALP.2022.122,
  author =	{Exibard, L\'{e}o and Filiot, Emmanuel and Khalimov, Ayrat},
  title =	{{A Generic Solution to Register-Bounded Synthesis with an Application to Discrete Orders}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{122:1--122:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.122},
  URN =		{urn:nbn:de:0030-drops-164634},
  doi =		{10.4230/LIPIcs.ICALP.2022.122},
  annote =	{Keywords: Synthesis, Register Automata, Transducers, Ordered Data Domains}
}
Document
Church Synthesis on Register Automata over Linearly Ordered Data Domains

Authors: Léo Exibard, Emmanuel Filiot, and Ayrat Khalimov

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
Register automata are finite automata equipped with a finite set of registers in which they can store data, i.e. elements from an unbounded or infinite alphabet. They provide a simple formalism to specify the behaviour of reactive systems operating over data ω-words. We study the synthesis problem for specifications given as register automata over a linearly ordered data domain (e.g. (ℕ, ≤) or (ℚ, ≤)), which allow for comparison of data with regards to the linear order. To that end, we extend the classical Church synthesis game to infinite alphabets: two players, Adam and Eve, alternately play some data, and Eve wins whenever their interaction complies with the specification, which is a language of ω-words over ordered data. Such games are however undecidable, even when the specification is recognised by a deterministic register automaton. This is in contrast with the equality case, where the problem is only undecidable for nondeterministic and universal specifications. Thus, we study one-sided Church games, where Eve instead operates over a finite alphabet, while Adam still manipulates data. We show they are determined, and deciding the existence of a winning strategy is in ExpTime, both for ℚ and ℕ. This follows from a study of constraint sequences, which abstract the behaviour of register automata, and allow us to reduce Church games to ω-regular games. Lastly, we apply these results to the transducer synthesis problem for input-driven register automata, where each output data is restricted to be the content of some register, and show that if there exists an implementation, then there exists one which is a register transducer.

Cite as

Léo Exibard, Emmanuel Filiot, and Ayrat Khalimov. Church Synthesis on Register Automata over Linearly Ordered Data Domains. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 28:1-28:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{exibard_et_al:LIPIcs.STACS.2021.28,
  author =	{Exibard, L\'{e}o and Filiot, Emmanuel and Khalimov, Ayrat},
  title =	{{Church Synthesis on Register Automata over Linearly Ordered Data Domains}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{28:1--28:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.28},
  URN =		{urn:nbn:de:0030-drops-136735},
  doi =		{10.4230/LIPIcs.STACS.2021.28},
  annote =	{Keywords: Synthesis, Church Game, Register Automata, Transducers, Ordered Data Words}
}
Document
Synthesis of Data Word Transducers

Authors: Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
In reactive synthesis, the goal is to automatically generate an implementation from a specification of the reactive and non-terminating input/output behaviours of a system. Specifications are usually modelled as logical formulae or automata over infinite sequences of signals (omega-words), while implementations are represented as transducers. In the classical setting, the set of signals is assumed to be finite. In this paper, we consider data omega-words instead, i.e., words over an infinite alphabet. In this context, we study specifications and implementations respectively given as automata and transducers extended with a finite set of registers. We consider different instances, depending on whether the specification is nondeterministic, universal or deterministic, and depending on whether the number of registers of the implementation is given or not. In the unbounded setting, we show undecidability for both universal and non-deterministic specifications, while decidability is recovered in the deterministic case. In the bounded setting, undecidability still holds for non-deterministic specifications, but can be recovered by disallowing tests over input data. The generic technique we use to show the latter result allows us to reprove some known result, namely decidability of bounded synthesis for universal specifications.

Cite as

Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier. Synthesis of Data Word Transducers. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 24:1-24:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{exibard_et_al:LIPIcs.CONCUR.2019.24,
  author =	{Exibard, L\'{e}o and Filiot, Emmanuel and Reynier, Pierre-Alain},
  title =	{{Synthesis of Data Word Transducers}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{24:1--24:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.24},
  URN =		{urn:nbn:de:0030-drops-109269},
  doi =		{10.4230/LIPIcs.CONCUR.2019.24},
  annote =	{Keywords: Register Automata, Synthesis, Data words, Transducers}
}
Document
Register-Bounded Synthesis

Authors: Ayrat Khalimov and Orna Kupferman

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
Traditional synthesis algorithms return, given a specification over finite sets of input and output Boolean variables, a finite-state transducer all whose computations satisfy the specification. Many real-life systems have an infinite state space. In particular, behaviors of systems with a finite control yet variables that range over infinite domains, are specified by automata with infinite alphabets. A register automaton has a finite set of registers, and its transitions are based on a comparison of the letters in the input with these stored in its registers. Unfortunately, reasoning about register automata is complex. In particular, the synthesis problem for specifications given by register automata, where the goal is to generate correct register transducers, is undecidable. We study the synthesis problem for systems with a bounded number of registers. Formally, the register-bounded realizability problem is to decide, given a specification register automaton A over infinite input and output alphabets and numbers k_s and k_e of registers, whether there is a system transducer T with at most k_s registers such that for all environment transducers T' with at most k_e registers, the computation T|T', generated by the interaction of T with T', satisfies the specification A. The register-bounded synthesis problem is to construct such a transducer T, if exists. The bounded setting captures better real-life scenarios where bounds on the systems and/or its environment are known. In addition, the bounds are the key to new synthesis algorithms, and, as recently shown in [A. Khalimov et al., 2018], they lead to decidability. Our contributions include a stronger specification formalism (universal register parity automata), simpler algorithms, which enable a clean complexity analysis, a study of settings in which both the system and the environment are bounded, and a study of the theoretical aspects of the setting; in particular, the differences among a fixed, finite, and infinite number of registers, and the determinacy of the corresponding games.

Cite as

Ayrat Khalimov and Orna Kupferman. Register-Bounded Synthesis. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 25:1-25:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{khalimov_et_al:LIPIcs.CONCUR.2019.25,
  author =	{Khalimov, Ayrat and Kupferman, Orna},
  title =	{{Register-Bounded Synthesis}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{25:1--25:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.25},
  URN =		{urn:nbn:de:0030-drops-109277},
  doi =		{10.4230/LIPIcs.CONCUR.2019.25},
  annote =	{Keywords: Synthesis, Register Automata, Register Transducers}
}
  • Refine by Author
  • 3 Exibard, Léo
  • 3 Filiot, Emmanuel
  • 3 Khalimov, Ayrat
  • 1 Kupferman, Orna
  • 1 Reynier, Pierre-Alain

  • Refine by Classification
  • 3 Theory of computation → Automata over infinite objects
  • 3 Theory of computation → Logic and verification
  • 3 Theory of computation → Transducers
  • 1 Theory of computation → Formal languages and automata theory

  • Refine by Keyword
  • 4 Register Automata
  • 4 Synthesis
  • 3 Transducers
  • 1 Church Game
  • 1 Data words
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2019
  • 1 2021
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail