8 Search Results for "Kleinberg, Robert"


Document
An Improved Lower Bound for Matroid Intersection Prophet Inequalities

Authors: Raghuvansh R. Saxena, Santhoshini Velusamy, and S. Matthew Weinberg

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We consider prophet inequalities subject to feasibility constraints that are the intersection of q matroids. The best-known algorithms achieve a Θ(q)-approximation, even when restricted to instances that are the intersection of q partition matroids, and with i.i.d. Bernoulli random variables [José R. Correa et al., 2022; Moran Feldman et al., 2016; Marek Adamczyk and Michal Wlodarczyk, 2018]. The previous best-known lower bound is Θ(√q) due to a simple construction of [Robert Kleinberg and S. Matthew Weinberg, 2012] (which uses i.i.d. Bernoulli random variables, and writes the construction as the intersection of partition matroids). We establish an improved lower bound of q^{1/2+Ω(1/log log q)} by writing the construction of [Robert Kleinberg and S. Matthew Weinberg, 2012] as the intersection of asymptotically fewer partition matroids. We accomplish this via an improved upper bound on the product dimension of a graph with p^p disjoint cliques of size p, using recent techniques developed in [Noga Alon and Ryan Alweiss, 2020].

Cite as

Raghuvansh R. Saxena, Santhoshini Velusamy, and S. Matthew Weinberg. An Improved Lower Bound for Matroid Intersection Prophet Inequalities. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 95:1-95:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{saxena_et_al:LIPIcs.ITCS.2023.95,
  author =	{Saxena, Raghuvansh R. and Velusamy, Santhoshini and Weinberg, S. Matthew},
  title =	{{An Improved Lower Bound for Matroid Intersection Prophet Inequalities}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{95:1--95:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.95},
  URN =		{urn:nbn:de:0030-drops-175986},
  doi =		{10.4230/LIPIcs.ITCS.2023.95},
  annote =	{Keywords: Prophet Inequalities, Intersection of Matroids}
}
Document
Total Functions in the Polynomial Hierarchy

Authors: Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos Papadimitriou

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We identify several genres of search problems beyond NP for which existence of solutions is guaranteed. One class that seems especially rich in such problems is PEPP (for "polynomial empty pigeonhole principle"), which includes problems related to existence theorems proved through the union bound, such as finding a bit string that is far from all codewords, finding an explicit rigid matrix, as well as a problem we call Complexity, capturing Complexity Theory’s quest. When the union bound is generous, in that solutions constitute at least a polynomial fraction of the domain, we have a family of seemingly weaker classes α-PEPP, which are inside FP^NP|poly. Higher in the hierarchy, we identify the constructive version of the Sauer-Shelah lemma and the appropriate generalization of PPP that contains it, as well as the problem of finding a king in a tournament (a vertex k such that all other vertices are defeated by k, or by somebody k defeated).

Cite as

Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos Papadimitriou. Total Functions in the Polynomial Hierarchy. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 44:1-44:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kleinberg_et_al:LIPIcs.ITCS.2021.44,
  author =	{Kleinberg, Robert and Korten, Oliver and Mitropolsky, Daniel and Papadimitriou, Christos},
  title =	{{Total Functions in the Polynomial Hierarchy}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{44:1--44:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.44},
  URN =		{urn:nbn:de:0030-drops-135835},
  doi =		{10.4230/LIPIcs.ITCS.2021.44},
  annote =	{Keywords: total complexity, polynomial hierarchy, pigeonhole principle}
}
Document
Randomness and Fairness in Two-Sided Matching with Limited Interviews

Authors: Hedyeh Beyhaghi and Éva Tardos

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We study the outcome in a matching market where both sides have limited ability to consider options. For example, in the national residency matching program, doctors are limited to apply to a small set of hospitals, and hospitals are limited by the time required to interview candidates. Our main findings are the following: (1) In markets where jobs can only consider a limited number of candidates for interview, it increases the size of the resulting matching if the system has a limit on the number of applications a candidate can send. (2) The fair system of all applicants being allowed to apply to the exact same number of positions maximizes the expected size of the matching. More particularly, starting from an integer k as the number of applications, the matching size decreases as a few applicants are allowed to apply to one additional position (and then increases again as they are all allowed to apply to k+1). Although it seems natural to expect that the size of the matching would be a monotone increasing and concave function in the number of applications, our results show that neither is true. These results hold even in a market where a-priori all jobs and all candidates are equally likely to be good, and the judgments of different employers and candidates are independent. Our main technical contribution is computing the expected size of the matching found via the deferred acceptance algorithm as a function of the number of interviews and applications in a market where preferences are uniform and independent. Through simulations we confirm that these findings extend to markets where rankings become correlated after the interviews.

Cite as

Hedyeh Beyhaghi and Éva Tardos. Randomness and Fairness in Two-Sided Matching with Limited Interviews. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 74:1-74:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{beyhaghi_et_al:LIPIcs.ITCS.2021.74,
  author =	{Beyhaghi, Hedyeh and Tardos, \'{E}va},
  title =	{{Randomness and Fairness in Two-Sided Matching with Limited Interviews}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{74:1--74:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.74},
  URN =		{urn:nbn:de:0030-drops-136139},
  doi =		{10.4230/LIPIcs.ITCS.2021.74},
  annote =	{Keywords: Matching with Short Lists, Stable Matching, Balls in Bins Problem}
}
Document
APPROX
Max-Min Greedy Matching

Authors: Alon Eden, Uriel Feige, and Michal Feldman

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
A bipartite graph G(U,V;E) that admits a perfect matching is given. One player imposes a permutation pi over V, the other player imposes a permutation sigma over U. In the greedy matching algorithm, vertices of U arrive in order sigma and each vertex is matched to the highest (under pi) yet unmatched neighbor in V (or left unmatched, if all its neighbors are already matched). The obtained matching is maximal, thus matches at least a half of the vertices. The max-min greedy matching problem asks: suppose the first (max) player reveals pi, and the second (min) player responds with the worst possible sigma for pi, does there exist a permutation pi ensuring to match strictly more than a half of the vertices? Can such a permutation be computed in polynomial time? The main result of this paper is an affirmative answer for these questions: we show that there exists a polytime algorithm to compute pi for which for every sigma at least rho > 0.51 fraction of the vertices of V are matched. We provide additional lower and upper bounds for special families of graphs, including regular and Hamiltonian graphs. Our solution solves an open problem regarding the welfare guarantees attainable by pricing in sequential markets with binary unit-demand valuations.

Cite as

Alon Eden, Uriel Feige, and Michal Feldman. Max-Min Greedy Matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 7:1-7:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{eden_et_al:LIPIcs.APPROX-RANDOM.2019.7,
  author =	{Eden, Alon and Feige, Uriel and Feldman, Michal},
  title =	{{Max-Min Greedy Matching}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{7:1--7:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.7},
  URN =		{urn:nbn:de:0030-drops-112229},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.7},
  annote =	{Keywords: Online matching, Pricing mechanism, Markets}
}
Document
Inferential Privacy Guarantees for Differentially Private Mechanisms

Authors: Arpita Ghosh and Robert Kleinberg

Published in: LIPIcs, Volume 67, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017)


Abstract
The following is a summary of the paper "Inferential Privacy Guarantees for Differentially Private Mechanisms", presented at the Eighth Innovations in Theoretical Computer Science Conference in January 2017. The full version of the paper can be found on arXiv at the URL https://arxiv.org/abs/1603.01508.

Cite as

Arpita Ghosh and Robert Kleinberg. Inferential Privacy Guarantees for Differentially Private Mechanisms. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 9:1-9:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{ghosh_et_al:LIPIcs.ITCS.2017.9,
  author =	{Ghosh, Arpita and Kleinberg, Robert},
  title =	{{Inferential Privacy Guarantees for Differentially Private Mechanisms}},
  booktitle =	{8th Innovations in Theoretical Computer Science Conference (ITCS 2017)},
  pages =	{9:1--9:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-029-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{67},
  editor =	{Papadimitriou, Christos H.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.9},
  URN =		{urn:nbn:de:0030-drops-81451},
  doi =		{10.4230/LIPIcs.ITCS.2017.9},
  annote =	{Keywords: differential privacy, statistical inference, statistical mechanics}
}
Document
The Lovász Theta Function for Random Regular Graphs and Community Detection in the Hard Regime

Authors: Jess Banks, Robert Kleinberg, and Cristopher Moore

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
We derive upper and lower bounds on the degree d for which the Lovasz theta function, or equivalently sum-of-squares proofs with degree two, can refute the existence of a k-coloring in random regular graphs G(n,d). We show that this type of refutation fails well above the k-colorability transition, and in particular everywhere below the Kesten-Stigum threshold. This is consistent with the conjecture that refuting k-colorability, or distinguishing G(n,d) from the planted coloring model, is hard in this region. Our results also apply to the disassortative case of the stochastic block model, adding evidence to the conjecture that there is a regime where community detection is computationally hard even though it is information-theoretically possible. Using orthogonal polynomials, we also provide explicit upper bounds on the theta function for regular graphs of a given girth, which may be of independent interest.

Cite as

Jess Banks, Robert Kleinberg, and Cristopher Moore. The Lovász Theta Function for Random Regular Graphs and Community Detection in the Hard Regime. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 28:1-28:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{banks_et_al:LIPIcs.APPROX-RANDOM.2017.28,
  author =	{Banks, Jess and Kleinberg, Robert and Moore, Cristopher},
  title =	{{The Lov\'{a}sz Theta Function for Random Regular Graphs and Community Detection in the Hard Regime}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{28:1--28:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.28},
  URN =		{urn:nbn:de:0030-drops-75771},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.28},
  annote =	{Keywords: Lov\'{a}sz Theta Function, Random Regular Graphs, Sum of Squares, Orthogonal Polynomials}
}
Document
Simultaneous Nearest Neighbor Search

Authors: Piotr Indyk, Robert Kleinberg, Sepideh Mahabadi, and Yang Yuan

Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)


Abstract
Motivated by applications in computer vision and databases, we introduce and study the Simultaneous Nearest Neighbor Search (SNN) problem. Given a set of data points, the goal of SNN is to design a data structure that, given a collection of queries, finds a collection of close points that are compatible with each other. Formally, we are given k query points Q=q_1,...,q_k, and a compatibility graph G with vertices in Q, and the goal is to return data points p_1,...,p_k that minimize (i) the weighted sum of the distances from q_i to p_i and (ii) the weighted sum, over all edges (i,j) in the compatibility graph G, of the distances between p_i and p_j. The problem has several applications in computer vision and databases, where one wants to return a set of *consistent* answers to multiple related queries. Furthermore, it generalizes several well-studied computational problems, including Nearest Neighbor Search, Aggregate Nearest Neighbor Search and the 0-extension problem. In this paper we propose and analyze the following general two-step method for designing efficient data structures for SNN. In the first step, for each query point q_i we find its (approximate) nearest neighbor point p'_i; this can be done efficiently using existing approximate nearest neighbor structures. In the second step, we solve an off-line optimization problem over sets q_1,...,q_k and p'_1,...,p'_k; this can be done efficiently given that k is much smaller than n. Even though p'_1,...,p'_k might not constitute the optimal answers to queries q_1,...,q_k, we show that, for the unweighted case, the resulting algorithm satisfies a O(log k/log log k)-approximation guarantee. Furthermore, we show that the approximation factor can be in fact reduced to a constant for compatibility graphs frequently occurring in practice, e.g., 2D grids, 3D grids or planar graphs. Finally, we validate our theoretical results by preliminary experiments. In particular, we show that the empirical approximation factor provided by the above approach is very close to 1.

Cite as

Piotr Indyk, Robert Kleinberg, Sepideh Mahabadi, and Yang Yuan. Simultaneous Nearest Neighbor Search. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 44:1-44:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{indyk_et_al:LIPIcs.SoCG.2016.44,
  author =	{Indyk, Piotr and Kleinberg, Robert and Mahabadi, Sepideh and Yuan, Yang},
  title =	{{Simultaneous Nearest Neighbor Search}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{44:1--44:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{Fekete, S\'{a}ndor and Lubiw, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.44},
  URN =		{urn:nbn:de:0030-drops-59360},
  doi =		{10.4230/LIPIcs.SoCG.2016.44},
  annote =	{Keywords: Approximate Nearest Neighbor, Metric Labeling, 0-extension, Simultaneous Nearest Neighbor, Group Nearest Neighbor}
}
Document
Improved Lower Bounds for Testing Triangle-freeness in Boolean Functions via Fast Matrix Multiplication

Authors: Hu Fu and Robert Kleinberg

Published in: LIPIcs, Volume 28, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)


Abstract
Understanding the query complexity for testing linear-invariant properties has been a central open problem in the study of algebraic property testing. Triangle-freeness in Boolean functions is a simple property whose testing complexity is unknown. Three Boolean functions f1, f2 and f3, mapping {0,1}^k to {0,1}, are said to be triangle free if there is no x, y in {0,1}^k such that f1(x) = f2(y) = f3(x + y) = 1. This property is known to be strongly testable (Green 2005), but the number of queries needed is upper-bounded only by a tower of twos whose height is polynomial in 1 / epsislon, where epsislon is the distance between the tested function triple and triangle-freeness, i.e., the minimum fraction of function values that need to be modified to make the triple triangle free. A lower bound of (1 / epsilon)^2.423 for any one-sided tester was given by Bhattacharyya and Xie (2010). In this work we improve this bound to (1 / epsilon)^6.619. Interestingly, we prove this by way of a combinatorial construction called uniquely solvable puzzles that was at the heart of Coppersmith and Winograd's renowned matrix multiplication algorithm.

Cite as

Hu Fu and Robert Kleinberg. Improved Lower Bounds for Testing Triangle-freeness in Boolean Functions via Fast Matrix Multiplication. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 28, pp. 669-676, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{fu_et_al:LIPIcs.APPROX-RANDOM.2014.669,
  author =	{Fu, Hu and Kleinberg, Robert},
  title =	{{Improved Lower Bounds for Testing Triangle-freeness in Boolean Functions via Fast Matrix Multiplication}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)},
  pages =	{669--676},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-74-3},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{28},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} and Devanur, Nikhil R. and Moore, Cristopher},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2014.669},
  URN =		{urn:nbn:de:0030-drops-47304},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2014.669},
  annote =	{Keywords: Property testing, linear invariance, fast matrix multiplication, uniquely solvable puzzles}
}
  • Refine by Author
  • 5 Kleinberg, Robert
  • 1 Banks, Jess
  • 1 Beyhaghi, Hedyeh
  • 1 Eden, Alon
  • 1 Feige, Uriel
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Discrete mathematics
  • 1 Mathematics of computing → Matchings and factors
  • 1 Theory of computation → Algorithmic mechanism design
  • 1 Theory of computation → Complexity classes
  • 1 Theory of computation → Computational pricing and auctions

  • Refine by Keyword
  • 1 0-extension
  • 1 Approximate Nearest Neighbor
  • 1 Balls in Bins Problem
  • 1 Group Nearest Neighbor
  • 1 Intersection of Matroids
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 2 2017
  • 2 2021
  • 1 2014
  • 1 2016
  • 1 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail