2 Search Results for "Kumar, Abhinav"


Document
A Polynomial Degree Bound on Equations for Non-Rigid Matrices and Small Linear Circuits

Authors: Mrinal Kumar and Ben Lee Volk

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We show that there is an equation of degree at most poly(n) for the (Zariski closure of the) set of the non-rigid matrices: that is, we show that for every large enough field 𝔽, there is a non-zero n²-variate polynomial P ∈ 𝔽[x_{1, 1}, …, x_{n, n}] of degree at most poly(n) such that every matrix M which can be written as a sum of a matrix of rank at most n/100 and a matrix of sparsity at most n²/100 satisfies P(M) = 0. This confirms a conjecture of Gesmundo, Hauenstein, Ikenmeyer and Landsberg [Fulvio Gesmundo et al., 2016] and improves the best upper bound known for this problem down from exp(n²) [Abhinav Kumar et al., 2014; Fulvio Gesmundo et al., 2016] to poly(n). We also show a similar polynomial degree bound for the (Zariski closure of the) set of all matrices M such that the linear transformation represented by M can be computed by an algebraic circuit with at most n²/200 edges (without any restriction on the depth). As far as we are aware, no such bound was known prior to this work when the depth of the circuits is unbounded. Our methods are elementary and short and rely on a polynomial map of Shpilka and Volkovich [Amir Shpilka and Ilya Volkovich, 2015] to construct low degree "universal" maps for non-rigid matrices and small linear circuits. Combining this construction with a simple dimension counting argument to show that any such polynomial map has a low degree annihilating polynomial completes the proof. As a corollary, we show that any derandomization of the polynomial identity testing problem will imply new circuit lower bounds. A similar (but incomparable) theorem was proved by Kabanets and Impagliazzo [Valentine Kabanets and Russell Impagliazzo, 2004].

Cite as

Mrinal Kumar and Ben Lee Volk. A Polynomial Degree Bound on Equations for Non-Rigid Matrices and Small Linear Circuits. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 9:1-9:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kumar_et_al:LIPIcs.ITCS.2021.9,
  author =	{Kumar, Mrinal and Volk, Ben Lee},
  title =	{{A Polynomial Degree Bound on Equations for Non-Rigid Matrices and Small Linear Circuits}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{9:1--9:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.9},
  URN =		{urn:nbn:de:0030-drops-135486},
  doi =		{10.4230/LIPIcs.ITCS.2021.9},
  annote =	{Keywords: Rigid Matrices, Linear Circuits, Degree Bounds, Circuit Lower Bounds}
}
Document
Using Elimination Theory to construct Rigid Matrices

Authors: Abhinav Kumar, Satyanarayana V. Lokam, Vijay M. Patankar, and Jayalal Sarma M. N.

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
The rigidity of a matrix $A$ for target rank $r$ is the minimum number of entries of $A$ that must be changed to ensure that the rank of the altered matrix is at most $r$. Since its introduction by Valiant \cite{Val77}, rigidity and similar rank-robustness functions of matrices have found numerous applications in circuit complexity, communication complexity, and learning complexity. Almost all $\nbyn$ matrices over an infinite field have a rigidity of $(n-r)^2$. It is a long-standing open question to construct infinite families of \emph{explicit} matrices even with superlinear rigidity when $r=\Omega(n)$. In this paper, we construct an infinite family of complex matrices with the largest possible, i.e., $(n-r)^2$, rigidity. The entries of an $\nbyn$ matrix in this family are distinct primitive roots of unity of orders roughly \SL{$\exp(n^4 \log n)$}. To the best of our knowledge, this is the first family of concrete (but not entirely explicit) matrices having maximal rigidity and a succinct algebraic description. Our construction is based on elimination theory of polynomial ideals. In particular, we use results on the existence of polynomials in elimination ideals with effective degree upper bounds (effective Nullstellensatz). Using elementary algebraic geometry, we prove that the dimension of the affine variety of matrices of rigidity at most $k$ is exactly $n^2 - (n-r)^2 +k$. Finally, we use elimination theory to examine whether the rigidity function is semicontinuous.

Cite as

Abhinav Kumar, Satyanarayana V. Lokam, Vijay M. Patankar, and Jayalal Sarma M. N.. Using Elimination Theory to construct Rigid Matrices. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 299-310, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{kumar_et_al:LIPIcs.FSTTCS.2009.2327,
  author =	{Kumar, Abhinav and Lokam, Satyanarayana V. and Patankar, Vijay M. and Sarma M. N., Jayalal},
  title =	{{Using Elimination Theory to construct Rigid Matrices}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{299--310},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2327},
  URN =		{urn:nbn:de:0030-drops-23278},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2327},
  annote =	{Keywords: Matrix Rigidity, Lower Bounds, Circuit Complexity}
}
  • Refine by Author
  • 1 Kumar, Abhinav
  • 1 Kumar, Mrinal
  • 1 Lokam, Satyanarayana V.
  • 1 Patankar, Vijay M.
  • 1 Sarma M. N., Jayalal
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Algebraic complexity theory
  • 1 Theory of computation → Circuit complexity

  • Refine by Keyword
  • 1 Circuit Complexity
  • 1 Circuit Lower Bounds
  • 1 Degree Bounds
  • 1 Linear Circuits
  • 1 Lower Bounds
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2009
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail