2 Search Results for "Lang, Martin"


Document
Short Paper
Abstract Data Types for Spatio-Temporal Remote Sensing Analysis (Short Paper)

Authors: Martin Sudmanns, Stefan Lang, Dirk Tiede, Christian Werner, Hannah Augustin, and Andrea Baraldi

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
Abstract data types are a helpful framework to formalise analyses and make them more transparent, reproducible and comprehensible. We are revisiting an approach based on the space, time and theme dimensions of remotely sensed data, and extending it with a more differentiated understanding of space-time representations. In contrast to existing approaches and implementations that consider only fixed spatial units (e.g. pixels), our approach allows investigations of the spatial units' spatio-temporal characteristics, such as the size and shape of their geometry, and their relationships. Five different abstract data types are identified to describe geographical phenomenon, either directly or in combination: coverage, time series, trajectory, composition and evolution.

Cite as

Martin Sudmanns, Stefan Lang, Dirk Tiede, Christian Werner, Hannah Augustin, and Andrea Baraldi. Abstract Data Types for Spatio-Temporal Remote Sensing Analysis (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 60:1-60:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{sudmanns_et_al:LIPIcs.GISCIENCE.2018.60,
  author =	{Sudmanns, Martin and Lang, Stefan and Tiede, Dirk and Werner, Christian and Augustin, Hannah and Baraldi, Andrea},
  title =	{{Abstract Data Types for Spatio-Temporal Remote Sensing Analysis}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{60:1--60:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.60},
  URN =		{urn:nbn:de:0030-drops-93881},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.60},
  annote =	{Keywords: Big Earth Data, Semantic Analysis, Data Cube}
}
Document
A Unified Approach to Boundedness Properties in MSO

Authors: Lukasz Kaiser, Martin Lang, Simon Leßenich, and Christof Löding

Published in: LIPIcs, Volume 41, 24th EACSL Annual Conference on Computer Science Logic (CSL 2015)


Abstract
In the past years, extensions of monadic second-order logic (MSO) that can specify boundedness properties by the use of operators referring to the sizes of sets have been considered. In particular, the logics costMSO introduced by T. Colcombet and MSO+U by M. Bojanczyk were analyzed and connections to automaton models have been established to obtain decision procedures for these logics. In this work, we propose the logic quantitative counting MSO (qcMSO for short), which combines aspects from both costMSO and MSO+U. We show that both logics can be embedded into qcMSO in a natural way. Moreover, we provide a decidability proof for the theory of its weak variant (quantification only over finite sets) for the natural numbers with order and the infinite binary tree. These decidability results are obtained using a regular cost function extension of automatic structures called resource-automatic structures.

Cite as

Lukasz Kaiser, Martin Lang, Simon Leßenich, and Christof Löding. A Unified Approach to Boundedness Properties in MSO. In 24th EACSL Annual Conference on Computer Science Logic (CSL 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 41, pp. 441-456, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{kaiser_et_al:LIPIcs.CSL.2015.441,
  author =	{Kaiser, Lukasz and Lang, Martin and Le{\ss}enich, Simon and L\"{o}ding, Christof},
  title =	{{A Unified Approach to Boundedness Properties in MSO}},
  booktitle =	{24th EACSL Annual Conference on Computer Science Logic (CSL 2015)},
  pages =	{441--456},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-90-3},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{41},
  editor =	{Kreutzer, Stephan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2015.441},
  URN =		{urn:nbn:de:0030-drops-54309},
  doi =		{10.4230/LIPIcs.CSL.2015.441},
  annote =	{Keywords: quantitative logics, monadic second order logic, boundedness, automatic structures, tree automata}
}
  • Refine by Author
  • 1 Augustin, Hannah
  • 1 Baraldi, Andrea
  • 1 Kaiser, Lukasz
  • 1 Lang, Martin
  • 1 Lang, Stefan
  • Show More...

  • Refine by Classification
  • 1 Information systems → Search interfaces

  • Refine by Keyword
  • 1 Big Earth Data
  • 1 Data Cube
  • 1 Semantic Analysis
  • 1 automatic structures
  • 1 boundedness
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2015
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail