102 Search Results for "Larsen, Kim G."


Volume

LIPIcs, Volume 83

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)

MFCS 2017, August 21-25, 2017, Aalborg, Denmark

Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin

Document
Introduction
Introduction to the Special Issue on Distributed Hybrid Systems

Authors: Alessandro Abate, Uli Fahrenberg, and Martin Fränzle

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
This special issue contains seven papers within the broad subject of Distributed Hybrid Systems, that is, systems combining hybrid discrete-continuous state spaces with elements of concurrency and logical or spatial distribution. It follows up on several workshops on the same theme which were held between 2017 and 2019 and organized by the editors of this volume. The first of these workshops was held in Aalborg, Denmark, in August 2017 and associated with the MFCS conference. It featured invited talks by Alessandro Abate, Martin Fränzle, Kim G. Larsen, Martin Raussen, and Rafael Wisniewski. The second workshop was held in Palaiseau, France, in July 2018, with invited talks by Luc Jaulin, Thao Dang, Lisbeth Fajstrup, Emmanuel Ledinot, and André Platzer. The third workshop was held in Amsterdam, The Netherlands, in August 2019, associated with the CONCUR conference. It featured a special theme on distributed robotics and had invited talks by Majid Zamani, Hervé de Forges, and Xavier Urbain. The vision and purpose of the DHS workshops was to connect researchers working in real-time systems, hybrid systems, control theory, formal verification, distributed computing, and concurrency theory, in order to advance the subject of distributed hybrid systems. Such systems are abundant and often safety-critical, but ensuring their correct functioning can in general be challenging. The investigation of their dynamics by analysis tools from the aforementioned domains remains fragmentary, providing the rationale behind the workshops: it was conceived that convergence and interaction of theories, methods, and tools from these different areas was needed in order to advance the subject.

Cite as

LITES, Volume 8, Issue 2: Special Issue on Distributed Hybrid Systems, pp. 0:i-0:iii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{abate_et_al:LITES.8.2.0,
  author =	{Abate, Alessandro and Fahrenberg, Uli and Fr\"{a}nzle, Martin},
  title =	{{Introduction to the Special Issue on Distributed Hybrid Systems}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{00:1--00:3},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LITES.8.2.0},
  doi =		{10.4230/LITES.8.2.0},
  annote =	{Keywords: Distributed hybrid systems}
}
Document
Invited Paper
Synthesis of Safe, Optimal and Compact Strategies for Stochastic Hybrid Games (Invited Paper)

Authors: Kim G. Larsen

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
UPPAAL-Stratego is a recent branch of the verification tool UPPAAL allowing for synthesis of safe and optimal strategies for stochastic timed (hybrid) games. We describe newly developed learning methods, allowing for synthesis of significantly better strategies and with much improved convergence behaviour. Also, we describe novel use of decision trees for learning orders-of-magnitude more compact strategy representation. In both cases, the seek for optimality does not compromise safety.

Cite as

Kim G. Larsen. Synthesis of Safe, Optimal and Compact Strategies for Stochastic Hybrid Games (Invited Paper). In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 2:1-2:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{larsen:LIPIcs.CONCUR.2019.2,
  author =	{Larsen, Kim G.},
  title =	{{Synthesis of Safe, Optimal and Compact Strategies for Stochastic Hybrid Games}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{2:1--2:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.2},
  URN =		{urn:nbn:de:0030-drops-109048},
  doi =		{10.4230/LIPIcs.CONCUR.2019.2},
  annote =	{Keywords: Timed automata, Stochastic hybrid grame, Symbolic synthesis, Reinforcement learning, Q-learning, M-learning}
}
Document
Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

Authors: Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare, Qiyi Tang, and Franck van Breugel

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
The probabilistic bisimilarity distance of Deng et al. has been proposed as a robust quantitative generalization of Segala and Lynch’s probabilistic bisimilarity for probabilistic automata. In this paper, we present a novel characterization of the bisimilarity distance as the solution of a simple stochastic game. The characterization gives us an algorithm to compute the distances by applying Condon’s simple policy iteration on these games. The correctness of Condon’s approach, however, relies on the assumption that the games are stopping. Our games may be non-stopping in general, yet we are able to prove termination for this extended class of games. Already other algorithms have been proposed in the literature to compute these distances, with complexity in UP cap coUP and PPAD. Despite the theoretical relevance, these algorithms are inefficient in practice. To the best of our knowledge, our algorithm is the first practical solution. In the proofs of all the above-mentioned results, an alternative presentation of the Hausdorff distance due to Mémoli plays a central rôle.

Cite as

Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare, Qiyi Tang, and Franck van Breugel. Computing Probabilistic Bisimilarity Distances for Probabilistic Automata. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 9:1-9:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bacci_et_al:LIPIcs.CONCUR.2019.9,
  author =	{Bacci, Giorgio and Bacci, Giovanni and Larsen, Kim G. and Mardare, Radu and Tang, Qiyi and van Breugel, Franck},
  title =	{{Computing Probabilistic Bisimilarity Distances for Probabilistic Automata}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{9:1--9:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.9},
  URN =		{urn:nbn:de:0030-drops-109119},
  doi =		{10.4230/LIPIcs.CONCUR.2019.9},
  annote =	{Keywords: Probabilistic automata, Behavioural metrics, Simple stochastic games, Simple policy iteration algorithm}
}
Document
Partial Order Reduction for Reachability Games

Authors: Frederik Meyer Bønneland, Peter Gjøl Jensen, Kim G. Larsen, Marco Muñiz, and Jiří Srba

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
Partial order reductions have been successfully applied to model checking of concurrent systems and practical applications of the technique show nontrivial reduction in the size of the explored state space. We present a theory of partial order reduction based on stubborn sets in the game-theoretical setting of 2-player games with reachability/safety objectives. Our stubborn reduction allows us to prune the interleaving behaviour of both players in the game, and we formally prove its correctness on the class of games played on general labelled transition systems. We then instantiate the framework to the class of weighted Petri net games with inhibitor arcs and provide its efficient implementation in the model checker TAPAAL. Finally, we evaluate our stubborn reduction on several case studies and demonstrate its efficiency.

Cite as

Frederik Meyer Bønneland, Peter Gjøl Jensen, Kim G. Larsen, Marco Muñiz, and Jiří Srba. Partial Order Reduction for Reachability Games. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bnneland_et_al:LIPIcs.CONCUR.2019.23,
  author =	{B{\o}nneland, Frederik Meyer and Jensen, Peter Gj{\o}l and Larsen, Kim G. and Mu\~{n}iz, Marco and Srba, Ji\v{r}{\'\i}},
  title =	{{Partial Order Reduction for Reachability Games}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.23},
  URN =		{urn:nbn:de:0030-drops-109251},
  doi =		{10.4230/LIPIcs.CONCUR.2019.23},
  annote =	{Keywords: Petri nets, games, synthesis, partial order reduction, stubborn sets}
}
Document
Complete Volume
LIPIcs, Volume 83, MFCS'17, Complete Volume

Authors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
LIPIcs, Volume 83, MFCS'17, Complete Volume

Cite as

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Proceedings{larsen_et_al:LIPIcs.MFCS.2017,
  title =	{{LIPIcs, Volume 83, MFCS'17, Complete Volume}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017},
  URN =		{urn:nbn:de:0030-drops-82073},
  doi =		{10.4230/LIPIcs.MFCS.2017},
  annote =	{Keywords: Theory of Computation}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 0:i-0:xvi, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{larsen_et_al:LIPIcs.MFCS.2017.0,
  author =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{0:i--0:xvi},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.0},
  URN =		{urn:nbn:de:0030-drops-80564},
  doi =		{10.4230/LIPIcs.MFCS.2017.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Does Looking Inside a Circuit Help?

Authors: Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, Pierre McKenzie, and Shadab Romani

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
The Black-Box Hypothesisstates that any property of Boolean functions decided efficiently (e.g., in BPP) with inputs represented by circuits can also be decided efficiently in the black-box setting, where an algorithm is given an oracle access to the input function and an upper bound on its circuit size. If this hypothesis is true, then P neq NP. We focus on the consequences of the hypothesis being false, showing that (under general conditions on the structure of a counterexample) it implies a non-trivial algorithm for CSAT. More specifically, we show that if there is a property F of boolean functions such that F has high sensitivity on some input function f of subexponential circuit complexity (which is a sufficient condition for F being a counterexample to the Black-Box Hypothesis), then CSAT is solvable by a subexponential-size circuit family. Moreover, if such a counterexample F is symmetric, then CSAT is in Ppoly. These results provide some evidence towards the conjecture (made in this paper) that the Black-Box Hypothesis is false if and only if CSAT is easy.

Cite as

Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, Pierre McKenzie, and Shadab Romani. Does Looking Inside a Circuit Help?. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 1:1-1:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{impagliazzo_et_al:LIPIcs.MFCS.2017.1,
  author =	{Impagliazzo, Russell and Kabanets, Valentine and Kolokolova, Antonina and McKenzie, Pierre and Romani, Shadab},
  title =	{{Does Looking Inside a Circuit Help?}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{1:1--1:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.1},
  URN =		{urn:nbn:de:0030-drops-80975},
  doi =		{10.4230/LIPIcs.MFCS.2017.1},
  annote =	{Keywords: Black-Box Hypothesis, Rice's theorem, circuit complexity, SAT, sensitivity of boolean functions, decision tree complexity}
}
Document
The Power of Programs over Monoids in DA

Authors: Nathan Grosshans, Pierre McKenzie, and Luc Segoufin

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
The program-over-monoid model of computation originates with Barrington's proof that it captures the complexity class NC^1. Here we make progress in understanding the subtleties of the model. First, we identify a new tameness condition on a class of monoids that entails a natural characterization of the regular languages recognizable by programs over monoids from the class. Second, we prove that the class known as DA satisfies tameness and hence that the regular languages recognized by programs over monoids in DA are precisely those recognizable in the classical sense by morphisms from QDA. Third, we show by contrast that the well studied class of monoids called J is not tame and we exhibit a regular language, recognized by a program over a monoid from J, yet not recognizable classically by morphisms from the class QJ. Finally, we exhibit a program-length-based hierarchy within the class of languages recognized by programs over monoids from DA.

Cite as

Nathan Grosshans, Pierre McKenzie, and Luc Segoufin. The Power of Programs over Monoids in DA. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 2:1-2:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{grosshans_et_al:LIPIcs.MFCS.2017.2,
  author =	{Grosshans, Nathan and McKenzie, Pierre and Segoufin, Luc},
  title =	{{The Power of Programs over Monoids in DA}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{2:1--2:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.2},
  URN =		{urn:nbn:de:0030-drops-80909},
  doi =		{10.4230/LIPIcs.MFCS.2017.2},
  annote =	{Keywords: Programs over monoids, DA, lower-bounds}
}
Document
Regular Language Distance and Entropy

Authors: Austin J. Parker, Kelly B. Yancey, and Matthew P. Yancey

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
This paper addresses the problem of determining the distance between two regular languages. It will show how to expand Jaccard distance, which works on finite sets, to potentially-infinite regular languages. The entropy of a regular language plays a large role in the extension. Much of the paper is spent investigating the entropy of a regular language. This includes addressing issues that have required previous authors to rely on the upper limit of Shannon's traditional formulation of channel capacity, because its limit does not always exist. The paper also includes proposing a new limit based formulation for the entropy of a regular language and proves that formulation to both exist and be equivalent to Shannon's original formulation (when it exists). Additionally, the proposed formulation is shown to equal an analogous but formally quite different notion of topological entropy from Symbolic Dynamics -- consequently also showing Shannon's original formulation to be equivalent to topological entropy. Surprisingly, the natural Jaccard-like entropy distance is trivial in most cases. Instead, the entropy sum distance metric is suggested, and shown to be granular in certain situations.

Cite as

Austin J. Parker, Kelly B. Yancey, and Matthew P. Yancey. Regular Language Distance and Entropy. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{parker_et_al:LIPIcs.MFCS.2017.3,
  author =	{Parker, Austin J. and Yancey, Kelly B. and Yancey, Matthew P.},
  title =	{{Regular Language Distance and Entropy}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{3:1--3:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.3},
  URN =		{urn:nbn:de:0030-drops-80945},
  doi =		{10.4230/LIPIcs.MFCS.2017.3},
  annote =	{Keywords: regular languages, channel capacity, entropy, Jaccard, symbolic dynamics}
}
Document
The Complexity of Boolean Surjective General-Valued CSPs

Authors: Peter Fulla and Stanislav Zivny

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
Valued constraint satisfaction problems (VCSPs) are discrete optimisation problems with the objective function given as a sum of fixed-arity functions; the values are rational numbers or infinity. In Boolean surjective VCSPs variables take on labels from D={0,1} and an optimal assignment is required to use both labels from D. A classic example is the global min-cut problem in graphs. Building on the work of Uppman, we establish a dichotomy theorem and thus give a complete complexity classification of Boolean surjective VCSPs. The newly discovered tractable case has an interesting structure related to projections of downsets and upsets. Our work generalises the dichotomy for {0,infinity}-valued constraint languages corresponding to CSPs) obtained by Creignou and Hebrard, and the dichotomy for {0,1}-valued constraint languages (corresponding to Min-CSPs) obtained by Uppman.

Cite as

Peter Fulla and Stanislav Zivny. The Complexity of Boolean Surjective General-Valued CSPs. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{fulla_et_al:LIPIcs.MFCS.2017.4,
  author =	{Fulla, Peter and Zivny, Stanislav},
  title =	{{The Complexity of Boolean Surjective General-Valued CSPs}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{4:1--4:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.4},
  URN =		{urn:nbn:de:0030-drops-80623},
  doi =		{10.4230/LIPIcs.MFCS.2017.4},
  annote =	{Keywords: constraint satisfaction problems, surjective CSP, valued CSP, min-cut, polymorphisms, multimorphisms}
}
Document
On the Expressive Power of Quasiperiodic SFT

Authors: Bruno Durand and Andrei Romashchenko

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
In this paper we study the shifts, which are the shift-invariant and topologically closed sets of configurations over a finite alphabet in Z^d. The minimal shifts are those shifts in which all configurations contain exactly the same patterns. Two classes of shifts play a prominent role in symbolic dynamics, in language theory and in the theory of computability: the shifts of finite type (obtained by forbidding a finite number of finite patterns) and the effective shifts (obtained by forbidding a computably enumerable set of finite patterns). We prove that every effective minimal shift can be represented as a factor of a projective subdynamics on a minimal shift of finite type in a bigger (by 1) dimension. This result transfers to the class of minimal shifts a theorem by M.Hochman known for the class of all effective shifts and thus answers an open question by E. Jeandel. We prove a similar result for quasiperiodic shifts and also show that there exists a quasiperiodic shift of finite type for which Kolmogorov complexity of all patterns of size n\times n is \Omega(n).

Cite as

Bruno Durand and Andrei Romashchenko. On the Expressive Power of Quasiperiodic SFT. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 5:1-5:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{durand_et_al:LIPIcs.MFCS.2017.5,
  author =	{Durand, Bruno and Romashchenko, Andrei},
  title =	{{On the Expressive Power of Quasiperiodic SFT}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{5:1--5:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.5},
  URN =		{urn:nbn:de:0030-drops-80985},
  doi =		{10.4230/LIPIcs.MFCS.2017.5},
  annote =	{Keywords: minimal SFT, tilings, quasiperiodicityIn this paper we study the shifts, which are the shift-invariant and topologically closed sets of configurations}
}
Document
Parameterized Algorithms for Partitioning Graphs into Highly Connected Clusters

Authors: Ivan Bliznets and Nikolai Karpov

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
Clustering is a well-known and important problem with numerous applications. The graph-based model is one of the typical cluster models. In the graph model generally clusters are defined as cliques. However, such approach might be too restrictive as in some applications, not all objects from the same cluster must be connected. That is why different types of cliques relaxations often considered as clusters. In our work, we consider a problem of partitioning graph into clusters and a problem of isolating cluster of a special type where by cluster we mean highly connected subgraph. Initially, such clusterization was proposed by Hartuv and Shamir. And their HCS clustering algorithm was extensively applied in practice. It was used to cluster cDNA fingerprints, to find complexes in protein-protein interaction data, to group protein sequences hierarchically into superfamily and family clusters, to find families of regulatory RNA structures. The HCS algorithm partitions graph in highly connected subgraphs. However, it is achieved by deletion of not necessarily the minimum number of edges. In our work, we try to minimize the number of edge deletions. We consider problems from the parameterized point of view where the main parameter is a number of allowed edge deletions. The presented algorithms significantly improve previous known running times for the Highly Connected Deletion (improved from \cOs\left(81^k\right) to \cOs\left(3^k\right)), Isolated Highly Connected Subgraph (from \cOs(4^k) to \cOs\left(k^{\cO\left(k^{\sfrac{2}{3}}\right)}\right) ), Seeded Highly Connected Edge Deletion (from \cOs\left(16^{k^{\sfrac{3}{4}}}\right) to \cOs\left(k^{\sqrt{k}}\right)) problems. Furthermore, we present a subexponential algorithm for Highly Connected Deletion problem if the number of clusters is bounded. Overall our work contains three subexponential algorithms which is unusual as very recently there were known very few problems admitting subexponential algorithms.

Cite as

Ivan Bliznets and Nikolai Karpov. Parameterized Algorithms for Partitioning Graphs into Highly Connected Clusters. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 6:1-6:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bliznets_et_al:LIPIcs.MFCS.2017.6,
  author =	{Bliznets, Ivan and Karpov, Nikolai},
  title =	{{Parameterized Algorithms for Partitioning Graphs into Highly Connected Clusters}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{6:1--6:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.6},
  URN =		{urn:nbn:de:0030-drops-80728},
  doi =		{10.4230/LIPIcs.MFCS.2017.6},
  annote =	{Keywords: clustering, parameterized complexity, highly connected}
}
Document
Hypercube LSH for Approximate near Neighbors

Authors: Thijs Laarhoven

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
A celebrated technique for finding near neighbors for the angular distance involves using a set of random hyperplanes to partition the space into hash regions [Charikar, STOC 2002]. Experiments later showed that using a set of orthogonal hyperplanes, thereby partitioning the space into the Voronoi regions induced by a hypercube, leads to even better results [Terasawa and Tanaka, WADS 2007]. However, no theoretical explanation for this improvement was ever given, and it remained unclear how the resulting hypercube hash method scales in high dimensions. In this work, we provide explicit asymptotics for the collision probabilities when using hypercubes to partition the space. For instance, two near-orthogonal vectors are expected to collide with probability (1/pi)^d in dimension d, compared to (1/2)^d when using random hyperplanes. Vectors at angle pi/3 collide with probability (sqrt[3]/pi)^d, compared to (2/3)^d for random hyperplanes, and near-parallel vectors collide with similar asymptotic probabilities in both cases. For c-approximate nearest neighbor searching, this translates to a decrease in the exponent rho of locality-sensitive hashing (LSH) methods of a factor up to log2(pi) ~ 1.652 compared to hyperplane LSH. For c = 2, we obtain rho ~ 0.302 for hypercube LSH, improving upon the rho ~ 0.377 for hyperplane LSH. We further describe how to use hypercube LSH in practice, and we consider an example application in the area of lattice algorithms.

Cite as

Thijs Laarhoven. Hypercube LSH for Approximate near Neighbors. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{laarhoven:LIPIcs.MFCS.2017.7,
  author =	{Laarhoven, Thijs},
  title =	{{Hypercube LSH for Approximate near Neighbors}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.7},
  URN =		{urn:nbn:de:0030-drops-80926},
  doi =		{10.4230/LIPIcs.MFCS.2017.7},
  annote =	{Keywords: (approximate) near neighbors, locality-sensitive hashing, large deviations, dimensionality reduction, lattice algorithms}
}
Document
Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems

Authors: Akinori Kawachi, Mitsunori Ogihara, and Kei Uchizawa

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
A Boolean Finite Synchronous Dynamical System (BFDS, for short) consists of a finite number of objects that each maintains a boolean state, where after individually receiving state assignments, the objects update their state with respect to object-specific time-independent boolean functions synchronously in discrete time steps. The present paper studies the computational complexity of determining, given a boolean finite synchronous dynamical system, a configuration, which is a boolean vector representing the states of the objects, and a positive integer t, whether there exists another configuration from which the given configuration can be reached in t steps. It was previously shown that this problem, which we call the t-Predecessor Problem, is NP-complete even for t = 1 if the update function of an object is either the conjunction of arbitrary fan-in or the disjunction of arbitrary fan-in. This paper studies the computational complexity of the t-Predecessor Problem for a variety of sets of permissible update functions as well as for polynomially bounded t. It also studies the t-Garden-Of-Eden Problem, a variant of the t-Predecessor Problem that asks whether a configuration has a t-predecessor, which itself has no predecessor. The paper obtains complexity theoretical characterizations of all but one of these problems.

Cite as

Akinori Kawachi, Mitsunori Ogihara, and Kei Uchizawa. Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 8:1-8:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{kawachi_et_al:LIPIcs.MFCS.2017.8,
  author =	{Kawachi, Akinori and Ogihara, Mitsunori and Uchizawa, Kei},
  title =	{{Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{8:1--8:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.8},
  URN =		{urn:nbn:de:0030-drops-81078},
  doi =		{10.4230/LIPIcs.MFCS.2017.8},
  annote =	{Keywords: Computational complexity, dynamical systems, Garden of Eden, predecessor}
}
  • Refine by Author
  • 14 Larsen, Kim G.
  • 5 Mardare, Radu
  • 3 Bacci, Giorgio
  • 3 Bacci, Giovanni
  • 3 Chatterjee, Krishnendu
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Probability and statistics
  • 1 Theory of computation → Algorithmic game theory
  • 1 Theory of computation → Models of computation
  • 1 Theory of computation → Online learning theory
  • 1 Theory of computation → Program verification
  • Show More...

  • Refine by Keyword
  • 4 NP-completeness
  • 4 computational complexity
  • 3 Complexity
  • 3 Decidability
  • 3 Kolmogorov complexity
  • Show More...

  • Refine by Type
  • 101 document
  • 1 volume

  • Refine by Publication Year
  • 90 2017
  • 3 2019
  • 2 2009
  • 2 2016
  • 1 2005
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail