4 Search Results for "Laurent, Olivier"


Document
Type Isomorphisms for Multiplicative-Additive Linear Logic

Authors: Rémi Di Guardia and Olivier Laurent

Published in: LIPIcs, Volume 260, 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)


Abstract
We characterize type isomorphisms in the multiplicative-additive fragment of linear logic (MALL), and thus for ⋆-autonomous categories with finite products, extending a result for the multiplicative fragment by Balat and Di Cosmo [Vincent Balat and Roberto Di Cosmo, 1999]. This yields a much richer equational theory involving distributivity and annihilation laws. The unit-free case is obtained by relying on the proof-net syntax introduced by Hughes and Van Glabbeek [Dominic Hughes and Rob van Glabbeek, 2005]. We then use the sequent calculus to extend our results to full MALL (including all units).

Cite as

Rémi Di Guardia and Olivier Laurent. Type Isomorphisms for Multiplicative-Additive Linear Logic. In 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 260, pp. 26:1-26:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{diguardia_et_al:LIPIcs.FSCD.2023.26,
  author =	{Di Guardia, R\'{e}mi and Laurent, Olivier},
  title =	{{Type Isomorphisms for Multiplicative-Additive Linear Logic}},
  booktitle =	{8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)},
  pages =	{26:1--26:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-277-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{260},
  editor =	{Gaboardi, Marco and van Raamsdonk, Femke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2023.26},
  URN =		{urn:nbn:de:0030-drops-180103},
  doi =		{10.4230/LIPIcs.FSCD.2023.26},
  annote =	{Keywords: Linear Logic, Type Isomorphisms, Multiplicative-Additive fragment, Proof nets, Sequent calculus, Star-autonomous categories with finite products}
}
Document
Solving the Non-Crossing MAPF with CP

Authors: Xiao Peng, Christine Solnon, and Olivier Simonin

Published in: LIPIcs, Volume 210, 27th International Conference on Principles and Practice of Constraint Programming (CP 2021)


Abstract
We introduce a new Multi-Agent Path Finding (MAPF) problem which is motivated by an industrial application. Given a fleet of robots that move on a workspace that may contain static obstacles, we must find paths from their current positions to a set of destinations, and the goal is to minimise the length of the longest path. The originality of our problem comes from the fact that each robot is attached with a cable to an anchor point, and that robots are not able to cross these cables. We formally define the Non-Crossing MAPF (NC-MAPF) problem and show how to compute lower and upper bounds by solving well known assignment problems. We introduce a Variable Neighbourhood Search (VNS) approach for improving the upper bound, and a Constraint Programming (CP) model for solving the problem to optimality. We experimentally evaluate these approaches on randomly generated instances.

Cite as

Xiao Peng, Christine Solnon, and Olivier Simonin. Solving the Non-Crossing MAPF with CP. In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 210, pp. 45:1-45:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{peng_et_al:LIPIcs.CP.2021.45,
  author =	{Peng, Xiao and Solnon, Christine and Simonin, Olivier},
  title =	{{Solving the Non-Crossing MAPF with CP}},
  booktitle =	{27th International Conference on Principles and Practice of Constraint Programming (CP 2021)},
  pages =	{45:1--45:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-211-2},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{210},
  editor =	{Michel, Laurent D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.45},
  URN =		{urn:nbn:de:0030-drops-153367},
  doi =		{10.4230/LIPIcs.CP.2021.45},
  annote =	{Keywords: Constraint Programming (CP), Multi-Agent Path Finding (MAPF), Assignment Problems}
}
Document
Invited Talk
Strong Bisimulation for Control Operators (Invited Talk)

Authors: Delia Kesner, Eduardo Bonelli, and Andrés Viso

Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)


Abstract
The purpose of this paper is to identify programs with control operators whose reduction semantics are in exact correspondence. This is achieved by introducing a relation ≃, defined over a revised presentation of Parigot’s λμ-calculus we dub ΛM. Our result builds on two fundamental ingredients: (1) factorization of λμ-reduction into multiplicative and exponential steps by means of explicit term operators of ΛM, and (2) translation of ΛM-terms into Laurent’s polarized proof-nets (PPN) such that cut-elimination in PPN simulates our calculus. Our proposed relation ≃ is shown to characterize structural equivalence in PPN. Most notably, ≃ is shown to be a strong bisimulation with respect to reduction in ΛM, i.e. two ≃-equivalent terms have the exact same reduction semantics, a result which fails for Regnier’s σ-equivalence in λ-calculus as well as for Laurent’s σ-equivalence in λμ.

Cite as

Delia Kesner, Eduardo Bonelli, and Andrés Viso. Strong Bisimulation for Control Operators (Invited Talk). In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 4:1-4:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kesner_et_al:LIPIcs.CSL.2020.4,
  author =	{Kesner, Delia and Bonelli, Eduardo and Viso, Andr\'{e}s},
  title =	{{Strong Bisimulation for Control Operators}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{4:1--4:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Fern\'{a}ndez, Maribel and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.4},
  URN =		{urn:nbn:de:0030-drops-116473},
  doi =		{10.4230/LIPIcs.CSL.2020.4},
  annote =	{Keywords: Lambda-mu calculus, proof-nets, strong bisimulation}
}
Document
Focusing in Orthologic

Authors: Olivier Laurent

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
We propose new sequent calculus systems for orthologic (also known as minimal quantum logic) which satisfy the cut elimination property. The first one is a very simple system relying on the involutive status of negation. The second one incorporates the notion of focusing (coming from linear logic) to add constraints on proofs and thus to facilitate proof search. We demonstrate how to take benefits from the new systems in automatic proof search for orthologic.

Cite as

Olivier Laurent. Focusing in Orthologic. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{laurent:LIPIcs.FSCD.2016.25,
  author =	{Laurent, Olivier},
  title =	{{Focusing in Orthologic}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.25},
  URN =		{urn:nbn:de:0030-drops-59805},
  doi =		{10.4230/LIPIcs.FSCD.2016.25},
  annote =	{Keywords: orthologic, focusing, minimal quantum logic, linear logic, automatic proof search, cut elimination}
}
  • Refine by Author
  • 2 Laurent, Olivier
  • 1 Bonelli, Eduardo
  • 1 Di Guardia, Rémi
  • 1 Kesner, Delia
  • 1 Peng, Xiao
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Linear logic
  • 1 Computing methodologies
  • 1 Theory of computation → Lambda calculus
  • 1 Theory of computation → Operational semantics

  • Refine by Keyword
  • 1 Assignment Problems
  • 1 Constraint Programming (CP)
  • 1 Lambda-mu calculus
  • 1 Linear Logic
  • 1 Multi-Agent Path Finding (MAPF)
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2016
  • 1 2020
  • 1 2021
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail