2 Search Results for "Lechner, Antonia"


Document
Revisiting Parameter Synthesis for One-Counter Automata

Authors: Guillermo A. Pérez and Ritam Raha

Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)


Abstract
We study the synthesis problem for one-counter automata with parameters. One-counter automata are obtained by extending classical finite-state automata with a counter whose value can range over non-negative integers and be tested for zero. The updates and tests applicable to the counter can further be made parametric by introducing a set of integer-valued variables called parameters. The synthesis problem for such automata asks whether there exists a valuation of the parameters such that all infinite runs of the automaton satisfy some ω-regular property. Lechner showed that (the complement of) the problem can be encoded in a restricted one-alternation fragment of Presburger arithmetic with divisibility. In this work (i) we argue that said fragment, called ∀∃_RPAD^+, is unfortunately undecidable. Nevertheless, by a careful re-encoding of the problem into a decidable restriction of ∀∃_RPAD^+, (ii) we prove that the synthesis problem is decidable in general and in 2NEXP for several fixed ω-regular properties. Finally, (iii) we give polynomial-space algorithms for the special cases of the problem where parameters can only be used in counter tests.

Cite as

Guillermo A. Pérez and Ritam Raha. Revisiting Parameter Synthesis for One-Counter Automata. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 33:1-33:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{perez_et_al:LIPIcs.CSL.2022.33,
  author =	{P\'{e}rez, Guillermo A. and Raha, Ritam},
  title =	{{Revisiting Parameter Synthesis for One-Counter Automata}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{33:1--33:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.33},
  URN =		{urn:nbn:de:0030-drops-157534},
  doi =		{10.4230/LIPIcs.CSL.2022.33},
  annote =	{Keywords: Parametric one-counter automata, Reachability, Software Verification}
}
Document
Model Checking Flat Freeze LTL on One-Counter Automata

Authors: Antonia Lechner, Richard Mayr, Joël Ouaknine, Amaury Pouly, and James Worrell

Published in: LIPIcs, Volume 59, 27th International Conference on Concurrency Theory (CONCUR 2016)


Abstract
Freeze LTL is a temporal logic with registers that is suitable for specifying properties of data words. In this paper we study the model checking problem for Freeze LTL on one-counter automata. This problem is known to be undecidable in full generality and PSPACE-complete for the special case of deterministic one-counter automata. Several years ago, Demri and Sangnier investigated the model checking problem for the flat fragment of Freeze LTL on several classes of counter automata and posed the decidability of model checking flat Freeze LTL on one-counter automata as an open problem. In this paper we resolve this problem positively, utilising a known reduction to a reachability problem on one-counter automata with parameterised equality and disequality tests. Our main technical contribution is to show decidability of the latter problem by translation to Presburger arithmetic.

Cite as

Antonia Lechner, Richard Mayr, Joël Ouaknine, Amaury Pouly, and James Worrell. Model Checking Flat Freeze LTL on One-Counter Automata. In 27th International Conference on Concurrency Theory (CONCUR 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 59, pp. 29:1-29:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{lechner_et_al:LIPIcs.CONCUR.2016.29,
  author =	{Lechner, Antonia and Mayr, Richard and Ouaknine, Jo\"{e}l and Pouly, Amaury and Worrell, James},
  title =	{{Model Checking Flat Freeze LTL on One-Counter Automata}},
  booktitle =	{27th International Conference on Concurrency Theory (CONCUR 2016)},
  pages =	{29:1--29:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-017-0},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{59},
  editor =	{Desharnais, Jos\'{e}e and Jagadeesan, Radha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2016.29},
  URN =		{urn:nbn:de:0030-drops-61841},
  doi =		{10.4230/LIPIcs.CONCUR.2016.29},
  annote =	{Keywords: one-counter automata, disequality tests, reachability, freeze LTL, Presburger arithmetic}
}
  • Refine by Author
  • 1 Lechner, Antonia
  • 1 Mayr, Richard
  • 1 Ouaknine, Joël
  • 1 Pouly, Amaury
  • 1 Pérez, Guillermo A.
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Logic and verification
  • 1 Theory of computation → Quantitative automata

  • Refine by Keyword
  • 1 Parametric one-counter automata
  • 1 Presburger arithmetic
  • 1 Reachability
  • 1 Software Verification
  • 1 disequality tests
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2016
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail