5408 Search Results for "Leit�o, Jo�o"


Document
Space and Artificial Intelligence (Dagstuhl Seminar 23461)

Authors: Sašo Džeroski, Holger H. Hoos, Bertrand Le Saux, Leendert van der Torre, and Ana Kostovska

Published in: Dagstuhl Reports, Volume 13, Issue 11 (2024)


Abstract
This report documents the program and the outcomes of the Dagstuhl Seminar 23461 "Space and Artificial Intelligence". The seminar was interdisciplinary, situated at the intersection of research on AI / computer science and space research. Since each of these is a very wide field on its own, we focussed on a selection of topics from each of the two and their intersections. On the artificial intelligence side, we focused on data-driven AI, which makes use of data in order to produce intelligent behaviour and notably includes machine learning approaches. We also considered knowledge-based AI, which is focussed on the explicit formalisation of human knowledge and its use for tasks such as reasoning, planning, and scheduling. On the space research side, we considered the two major branches of space operations (SO) and Earth observation (EO). The seminar brought together a diverse set of players, including researchers from academia, on one hand, and practitioners from space agencies (ESA, NASA) and industry, on the other hand. The seminar included plenary talks and parallel group discussions. Through the plenary talks, we obtained insight into the state-of-the-art in the different areas of AI research and space research, and especially in their intersections. Through the parallel group discussions, we identified obstacles and challenges to further progress and charted directions for further work.

Cite as

Sašo Džeroski, Holger H. Hoos, Bertrand Le Saux, Leendert van der Torre, and Ana Kostovska. Space and Artificial Intelligence (Dagstuhl Seminar 23461). In Dagstuhl Reports, Volume 13, Issue 11, pp. 72-102, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{dzeroski_et_al:DagRep.13.11.72,
  author =	{D\v{z}eroski, Sa\v{s}o and Hoos, Holger H. and Le Saux, Bertrand and van der Torre, Leendert and Kostovska, Ana},
  title =	{{Space and Artificial Intelligence (Dagstuhl Seminar 23461)}},
  pages =	{72--102},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{11},
  editor =	{D\v{z}eroski, Sa\v{s}o and Hoos, Holger H. and Le Saux, Bertrand and van der Torre, Leendert and Kostovska, Ana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.11.72},
  URN =		{urn:nbn:de:0030-drops-198454},
  doi =		{10.4230/DagRep.13.11.72},
  annote =	{Keywords: Artificial Intelligence, Machine Learning, Data-based AI, Knowledge-based AI, Deep Learning, Foundation Models, Explainable Artificial Intelligence, Space Research, Space Operations, Earth Observation}
}
Document
Defining and Fortifying Against Cognitive Vulnerabilities in Social Engineering (Dagstuhl Seminar 23462)

Authors: Yomna Abdelrahman, Florian Alt, Tilman Dingler, Christopher Hadnagy, Abbie Maroño, and Verena Distler

Published in: Dagstuhl Reports, Volume 13, Issue 11 (2024)


Abstract
Social engineering has become the main vector for human-centered cyber attacks, resulting from an unparalleled level of professionalization in the cybercrime industry over the past years. Hereby, through manipulation, criminals seek to make victims take actions that compromise security, such as revealing credentials, issuing payments, or disclosing confidential information. Little effective means for protection exist today against such attacks beyond raising awareness through education. At the same time, the proliferation of sensors in our everyday lives - both in personal devices and in our (smart) environments - provides an unprecedented opportunity for developing solutions assessing the cognitive vulnerabilities of users and serves as a basis for novel means of protection. This report documents the program and the outcomes of the Dagstuhl Seminar 23462 "Defining and Fortifying Against Cognitive Vulnerabilities in Social Engineering". This 3-day seminar brought together experts from academia, industry, and the authorities working on social engineering. During the seminar, participants developed a common understanding of social engineering, identified grand challenges, worked on a research agenda, and identified ideas for collaborations in the form of research projects and joint initiatives.

Cite as

Yomna Abdelrahman, Florian Alt, Tilman Dingler, Christopher Hadnagy, Abbie Maroño, and Verena Distler. Defining and Fortifying Against Cognitive Vulnerabilities in Social Engineering (Dagstuhl Seminar 23462). In Dagstuhl Reports, Volume 13, Issue 11, pp. 103-129, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{abdelrahman_et_al:DagRep.13.11.103,
  author =	{Abdelrahman, Yomna and Alt, Florian and Dingler, Tilman and Hadnagy, Christopher and Maro\~{n}o, Abbie and Distler, Verena},
  title =	{{Defining and Fortifying Against Cognitive Vulnerabilities in Social Engineering (Dagstuhl Seminar 23462)}},
  pages =	{103--129},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{11},
  editor =	{Abdelrahman, Yomna and Alt, Florian and Dingler, Tilman and Hadnagy, Christopher and Maro\~{n}o, Abbie and Distler, Verena},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.11.103},
  URN =		{urn:nbn:de:0030-drops-198461},
  doi =		{10.4230/DagRep.13.11.103},
  annote =	{Keywords: Social Engineering, Cognitive Vulnerabilities, Phishing, Vishing}
}
Document
Accountable Software Systems (Dagstuhl Seminar 23411)

Authors: Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, Michael Veale, and Filip Cano Córdoba

Published in: Dagstuhl Reports, Volume 13, Issue 10 (2024)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23411 "Accountable Software Systems". The seminar brought together an interdisciplinary group of researchers from the fields of formal methods, machine learning, philosophy, political science, law, and policy studies to address the critical issue of accountability in the development and deployment of software systems. As these systems increasingly assume roles within safety-critical domains of society, including transportation, healthcare, recruitment, and the judiciary, the seminar aimed to explore the multifaceted concept of accountability, its significance, and its implementation challenges in this context. During the seminar, experts engaged deeply in discussions, presentations, and collaborative sessions, focusing on key themes such as the application of formal tools in socio-technical accountability, the impact of computing infrastructures on software accountability, and the innovation of formal languages and models to improve accountability measures. This interdisciplinary dialogue underscored the complexities involved in defining and operationalizing accountability, especially in light of technological advancements and their societal implications. The participants of the seminar reached a consensus on the pressing need for ongoing research and cross-disciplinary efforts to develop effective accountability mechanisms, highlighting the critical role of integrating socio-technical approaches and formal methodologies to enhance the accountability of autonomous systems and their contributions to society.

Cite as

Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, Michael Veale, and Filip Cano Córdoba. Accountable Software Systems (Dagstuhl Seminar 23411). In Dagstuhl Reports, Volume 13, Issue 10, pp. 24-49, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{konighofer_et_al:DagRep.13.10.24,
  author =	{K\"{o}nighofer, Bettina and Kroll, Joshua A. and Piskac, Ruzica and Veale, Michael and C\'{o}rdoba, Filip Cano},
  title =	{{Accountable Software Systems (Dagstuhl Seminar 23411)}},
  pages =	{24--49},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{10},
  editor =	{K\"{o}nighofer, Bettina and Kroll, Joshua A. and Piskac, Ruzica and Veale, Michael and C\'{o}rdoba, Filip Cano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.10.24},
  URN =		{urn:nbn:de:0030-drops-198328},
  doi =		{10.4230/DagRep.13.10.24},
  annote =	{Keywords: accountability, Responsible Decision Making, Societal Impact of AI}
}
Document
Network Attack Detection and Defense - AI-Powered Threats and Responses (Dagstuhl Seminar 23431)

Authors: Sven Dietrich, Frank Kargl, Hartmut König, Pavel Laskov, and Artur Hermann

Published in: Dagstuhl Reports, Volume 13, Issue 10 (2024)


Abstract
This report documents the program and the findings of Dagstuhl Seminar 23431 "Network Attack Detection and Defense - AI-Powered Threats and Responses". With the emergence of artificial intelligence (AI), attack detection and defense are taking on a new level of quality. Artificial intelligence will promote further automation of attacks. There are already examples of this, such as the Deep Locker malware. It is expected that we will soon face a situation in which malware and attacks will become more and more automated, intelligent, and AI-powered. Consequently, today’s threat response systems will become more and more inadequate, especially when they rely on manual intervention of security experts and analysts. The main objective of the seminar was to assess the state of the art and potentials that AI advances create for both attackers and defenders. The seminar continued the series of Dagstuhl events "Network Attack Detection and Defense" held in 2008, 2012, 2014, and 2016. The objectives of the seminar were threefold, namely (1) to investigate various scenarios of AI-based malware and attacks, (2) to debate trust in AI and modeling of threats against AI, and (3) to propose methods and strategies for AI-powered network defenses. At the seminar, which brought together participants from academia and industry, we stated that recent advances in artificial intelligence have opened up new possibilities for each of these directions. In general, more and more researchers in networking and security look at AI-based methods which made this a timely event to assess and categorize the state of the art as well as work towards a roadmap for future research. The outcome of the discussions and the proposed research directions are presented in this report.

Cite as

Sven Dietrich, Frank Kargl, Hartmut König, Pavel Laskov, and Artur Hermann. Network Attack Detection and Defense - AI-Powered Threats and Responses (Dagstuhl Seminar 23431). In Dagstuhl Reports, Volume 13, Issue 10, pp. 90-129, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{dietrich_et_al:DagRep.13.10.90,
  author =	{Dietrich, Sven and Kargl, Frank and K\"{o}nig, Hartmut and Laskov, Pavel and Hermann, Artur},
  title =	{{Network Attack Detection and Defense - AI-Powered Threats and Responses (Dagstuhl Seminar 23431)}},
  pages =	{90--129},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{10},
  editor =	{Dietrich, Sven and Kargl, Frank and K\"{o}nig, Hartmut and Laskov, Pavel and Hermann, Artur},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.10.90},
  URN =		{urn:nbn:de:0030-drops-198365},
  doi =		{10.4230/DagRep.13.10.90},
  annote =	{Keywords: artificial intelligence, cybersecurity, intrusion detection, machine learning}
}
Document
Decision-Making Techniques for Smart Semiconductor Manufacturing (Dagstuhl Seminar 23362)

Authors: Hans Ehm, John Fowler, Lars Mönch, and Daniel Schorn

Published in: Dagstuhl Reports, Volume 13, Issue 9 (2024)


Abstract
In September 2023 the Dagstuhl Seminar 23362 explored the needs of the semiconductor industry for novel decision-making techniques and the related information systems to empower flexible decisions for smart production. The seminar participants also spent time identifying requirements for a simulation testbed which allows for assessing smart planning and control decisions in the semiconductor industry. The Executive Summary describes the process of the seminar and discusses key findings and areas for future research regarding these topics. Abstracts of presentations given during the seminar and the output of breakout sessions are collected in further sections.

Cite as

Hans Ehm, John Fowler, Lars Mönch, and Daniel Schorn. Decision-Making Techniques for Smart Semiconductor Manufacturing (Dagstuhl Seminar 23362). In Dagstuhl Reports, Volume 13, Issue 9, pp. 69-102, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{ehm_et_al:DagRep.13.9.69,
  author =	{Ehm, Hans and Fowler, John and M\"{o}nch, Lars and Schorn, Daniel},
  title =	{{Decision-Making Techniques for Smart Semiconductor Manufacturing (Dagstuhl Seminar 23362)}},
  pages =	{69--102},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{9},
  editor =	{Ehm, Hans and Fowler, John and M\"{o}nch, Lars and Schorn, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.9.69},
  URN =		{urn:nbn:de:0030-drops-198216},
  doi =		{10.4230/DagRep.13.9.69},
  annote =	{Keywords: analytics, modeling, semiconductor manufacturing, simulation, smart manufacturing}
}
Document
Range Entropy Queries and Partitioning

Authors: Sanjay Krishnan and Stavros Sintos

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
Data partitioning that maximizes or minimizes Shannon entropy is a crucial subroutine in data compression, columnar storage, and cardinality estimation algorithms. These partition algorithms can be accelerated if we have a data structure to find the entropy in different subsets of data when the algorithm needs to decide what block to construct. While it is generally known how to compute the entropy of a discrete distribution efficiently, we want to efficiently derive the entropy among the data items that lie in a specific area. We solve this problem in a typical setting when we deal with real data, where data items are geometric points and each requested area is a query (hyper)rectangle. More specifically, we consider a set P of n weighted and colored points in ℝ^d. The goal is to construct a low space data structure, such that given a query (hyper)rectangle R, it computes the entropy based on the colors of the points in P∩ R, in sublinear time. We show a conditional lower bound for this problem proving that we cannot hope for data structures with near-linear space and near-constant query time. Then, we propose exact data structures for d = 1 and d > 1 with o(n^{2d}) space and o(n) query time. We also provide a tune parameter t that the user can choose to bound the asymptotic space and query time of the new data structures. Next, we propose near linear space data structures for returning either an additive or a multiplicative approximation of the entropy. Finally, we show how we can use the new data structures to efficiently partition time series and histograms with respect to entropy.

Cite as

Sanjay Krishnan and Stavros Sintos. Range Entropy Queries and Partitioning. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 6:1-6:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{krishnan_et_al:LIPIcs.ICDT.2024.6,
  author =	{Krishnan, Sanjay and Sintos, Stavros},
  title =	{{Range Entropy Queries and Partitioning}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{6:1--6:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.6},
  URN =		{urn:nbn:de:0030-drops-197883},
  doi =		{10.4230/LIPIcs.ICDT.2024.6},
  annote =	{Keywords: Shannon entropy, range query, data structure, data partitioning}
}
Document
Approximating Single-Source Personalized PageRank with Absolute Error Guarantees

Authors: Zhewei Wei, Ji-Rong Wen, and Mingji Yang

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
Personalized PageRank (PPR) is an extensively studied and applied node proximity measure in graphs. For a pair of nodes s and t on a graph G = (V,E), the PPR value π(s,t) is defined as the probability that an α-discounted random walk from s terminates at t, where the walk terminates with probability α at each step. We study the classic Single-Source PPR query, which asks for PPR approximations from a given source node s to all nodes in the graph. Specifically, we aim to provide approximations with absolute error guarantees, ensuring that the resultant PPR estimates π̂(s,t) satisfy max_{t ∈ V} |π̂(s,t)-π(s,t)| ≤ ε for a given error bound ε. We propose an algorithm that achieves this with high probability, with an expected running time of - Õ(√m/ε) for directed graphs, where m = |E|; - Õ(√{d_max}/ε) for undirected graphs, where d_max is the maximum node degree in the graph; - Õ(n^{γ-1/2}/ε) for power-law graphs, where n = |V| and γ ∈ (1/2,1) is the extent of the power law. These sublinear bounds improve upon existing results. We also study the case when degree-normalized absolute error guarantees are desired, requiring max_{t ∈ V} |π̂(s,t)/d(t)-π(s,t)/d(t)| ≤ ε_d for a given error bound ε_d, where the graph is undirected and d(t) is the degree of node t. We give an algorithm that provides this error guarantee with high probability, achieving an expected complexity of Õ(√{∑_{t ∈ V} π(s,t)/d(t)}/ε_d). This improves over the previously known O(1/ε_d) complexity.

Cite as

Zhewei Wei, Ji-Rong Wen, and Mingji Yang. Approximating Single-Source Personalized PageRank with Absolute Error Guarantees. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 9:1-9:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{wei_et_al:LIPIcs.ICDT.2024.9,
  author =	{Wei, Zhewei and Wen, Ji-Rong and Yang, Mingji},
  title =	{{Approximating Single-Source Personalized PageRank with Absolute Error Guarantees}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{9:1--9:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.9},
  URN =		{urn:nbn:de:0030-drops-197911},
  doi =		{10.4230/LIPIcs.ICDT.2024.9},
  annote =	{Keywords: Graph Algorithms, Sublinear Algorithms, Personalized PageRank}
}
Document
On the Convergence Rate of Linear Datalog ^∘ over Stable Semirings

Authors: Sungjin Im, Benjamin Moseley, Hung Ngo, and Kirk Pruhs

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
Datalog^∘ is an extension of Datalog, where instead of a program being a collection of union of conjunctive queries over the standard Boolean semiring, a program may now be a collection of sum-product queries over an arbitrary commutative partially ordered pre-semiring. Datalog^∘ is more powerful than Datalog in that its additional algebraic structure alows for supporting recursion with aggregation. At the same time, Datalog^∘ retains the syntactic and semantic simplicity of Datalog: Datalog^∘ has declarative least fixpoint semantics. The least fixpoint can be found via the naïve evaluation algorithm that repeatedly applies the immediate consequence operator until no further change is possible. It was shown in [Mahmoud Abo Khamis et al., 2022] that, when the underlying semiring is p-stable, then the naïve evaluation of any Datalog^∘ program over the semiring converges in a finite number of steps. However, the upper bounds on the rate of convergence were exponential in the number n of ground IDB atoms. This paper establishes polynomial upper bounds on the convergence rate of the naïve algorithm on linear Datalog^∘ programs, which is quite common in practice. In particular, the main result of this paper is that the convergence rate of linear Datalog^∘ programs under any p-stable semiring is O(pn³). Furthermore, we show a matching lower bound by constructing a p-stable semiring and a linear Datalog^∘ program that requires Ω(pn³) iterations for the naïve iteration algorithm to converge. Next, we study the convergence rate in terms of the number of elements in the semiring for linear Datalog^∘ programs. When L is the number of elements, the convergence rate is bounded by O(pn log L). This significantly improves the convergence rate for small L. We show a nearly matching lower bound as well.

Cite as

Sungjin Im, Benjamin Moseley, Hung Ngo, and Kirk Pruhs. On the Convergence Rate of Linear Datalog ^∘ over Stable Semirings. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{im_et_al:LIPIcs.ICDT.2024.11,
  author =	{Im, Sungjin and Moseley, Benjamin and Ngo, Hung and Pruhs, Kirk},
  title =	{{On the Convergence Rate of Linear Datalog ^∘ over Stable Semirings}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.11},
  URN =		{urn:nbn:de:0030-drops-197939},
  doi =		{10.4230/LIPIcs.ICDT.2024.11},
  annote =	{Keywords: Datalog, convergence rate, semiring}
}
Document
Computing Data Distribution from Query Selectivities

Authors: Pankaj K. Agarwal, Rahul Raychaudhury, Stavros Sintos, and Jun Yang

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
We are given a set 𝒵 = {(R_1,s_1), …, (R_n,s_n)}, where each R_i is a range in ℝ^d, such as rectangle or ball, and s_i ∈ [0,1] denotes its selectivity. The goal is to compute a small-size discrete data distribution 𝒟 = {(q₁,w₁),…, (q_m,w_m)}, where q_j ∈ ℝ^d and w_j ∈ [0,1] for each 1 ≤ j ≤ m, and ∑_{1≤j≤m} w_j = 1, such that 𝒟 is the most consistent with 𝒵, i.e., err_p(𝒟,𝒵) = 1/n ∑_{i = 1}ⁿ |s_i - ∑_{j=1}^m w_j⋅1(q_j ∈ R_i)|^p is minimized. In a database setting, 𝒵 corresponds to a workload of range queries over some table, together with their observed selectivities (i.e., fraction of tuples returned), and 𝒟 can be used as compact model for approximating the data distribution within the table without accessing the underlying contents. In this paper, we obtain both upper and lower bounds for this problem. In particular, we show that the problem of finding the best data distribution from selectivity queries is NP-complete. On the positive side, we describe a Monte Carlo algorithm that constructs, in time O((n+δ^{-d}) δ^{-2} polylog n), a discrete distribution 𝒟̃ of size O(δ^{-2}), such that err_p(𝒟̃,𝒵) ≤ min_𝒟 err_p(𝒟,𝒵)+δ (for p = 1,2,∞) where the minimum is taken over all discrete distributions. We also establish conditional lower bounds, which strongly indicate the infeasibility of relative approximations as well as removal of the exponential dependency on the dimension for additive approximations. This suggests that significant improvements to our algorithm are unlikely.

Cite as

Pankaj K. Agarwal, Rahul Raychaudhury, Stavros Sintos, and Jun Yang. Computing Data Distribution from Query Selectivities. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.ICDT.2024.18,
  author =	{Agarwal, Pankaj K. and Raychaudhury, Rahul and Sintos, Stavros and Yang, Jun},
  title =	{{Computing Data Distribution from Query Selectivities}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{18:1--18:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.18},
  URN =		{urn:nbn:de:0030-drops-198007},
  doi =		{10.4230/LIPIcs.ICDT.2024.18},
  annote =	{Keywords: selectivity queries, discrete distributions, Multiplicative Weights Update, eps-approximation, learnable functions, depth problem, arrangement}
}
Document
Subgraph Enumeration in Optimal I/O Complexity

Authors: Shiyuan Deng and Yufei Tao

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
Given a massive data graph G = (V, E) and a small pattern graph Q, the goal of subgraph enumeration is to list all the subgraphs of G isomorphic to Q. In the external memory (EM) model, it is well-known that every indivisible algorithm must perform Ω({|E|^ρ}/{M^{ρ-1} B}) I/Os in the worst case, where M represents the number of words in (internal) memory, B denotes the number of words in a disk block, and ρ is the fractional edge covering number of Q. It has been a longstanding open problem to design an algorithm to match this lower bound. The state of the art is an algorithm in ICDT'23 that achieves an I/O complexity of O({|E|^ρ}/{M^{ρ-1} B} log_{M/B} |E|/B) with high probability. In this paper, we remove the log_{M/B} |E|/B factor, thereby settling the open problem when randomization is permitted.

Cite as

Shiyuan Deng and Yufei Tao. Subgraph Enumeration in Optimal I/O Complexity. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 21:1-21:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{deng_et_al:LIPIcs.ICDT.2024.21,
  author =	{Deng, Shiyuan and Tao, Yufei},
  title =	{{Subgraph Enumeration in Optimal I/O Complexity}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{21:1--21:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.21},
  URN =		{urn:nbn:de:0030-drops-198033},
  doi =		{10.4230/LIPIcs.ICDT.2024.21},
  annote =	{Keywords: Subgraph Enumeration, Conjunctive Queries, External Memory, Algorithms}
}
Document
Join Sampling Under Acyclic Degree Constraints and (Cyclic) Subgraph Sampling

Authors: Ru Wang and Yufei Tao

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
Given a (natural) join with an acyclic set of degree constraints (the join itself does not need to be acyclic), we show how to draw a uniformly random sample from the join result in O(polymat/max{1, OUT}) expected time (assuming data complexity) after a preprocessing phase of O(IN) expected time, where IN, OUT, and polymat are the join’s input size, output size, and polymatroid bound, respectively. This compares favorably with the state of the art (Deng et al. and Kim et al., both in PODS'23), which states that, in the absence of degree constraints, a uniformly random sample can be drawn in Õ(AGM/max{1, OUT}) expected time after a preprocessing phase of Õ(IN) expected time, where AGM is the join’s AGM bound and Õ(.) hides a polylog(IN) factor. Our algorithm applies to every join supported by the solutions of Deng et al. and Kim et al. Furthermore, since the polymatroid bound is at most the AGM bound, our performance guarantees are never worse, but can be considerably better, than those of Deng et al. and Kim et al. We then utilize our techniques to tackle directed subgraph sampling, a problem that has extensive database applications and bears close relevance to joins. Let G = (V, E) be a directed data graph where each vertex has an out-degree at most λ, and let P be a directed pattern graph with a constant number of vertices. The objective is to uniformly sample an occurrence of P in G. The problem can be modeled as join sampling with input size IN = Θ(|E|) but, whenever P contains cycles, the converted join has cyclic degree constraints. We show that it is always possible to throw away certain degree constraints such that (i) the remaining constraints are acyclic and (ii) the new join has asymptotically the same polymatroid bound polymat as the old one. Combining this finding with our new join sampling solution yields an algorithm to sample from the original (cyclic) join (thereby yielding a uniformly random occurrence of P) in O(polymat/max{1, OUT}) expected time after O(|E|) expected-time preprocessing, where OUT is the number of occurrences.

Cite as

Ru Wang and Yufei Tao. Join Sampling Under Acyclic Degree Constraints and (Cyclic) Subgraph Sampling. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 23:1-23:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{wang_et_al:LIPIcs.ICDT.2024.23,
  author =	{Wang, Ru and Tao, Yufei},
  title =	{{Join Sampling Under Acyclic Degree Constraints and (Cyclic) Subgraph Sampling}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{23:1--23:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.23},
  URN =		{urn:nbn:de:0030-drops-198054},
  doi =		{10.4230/LIPIcs.ICDT.2024.23},
  annote =	{Keywords: Join Sampling, Subgraph Sampling, Degree Constraints, Polymatroid Bounds}
}
Document
Synergizing Theory and Practice of Automated Algorithm Design for Optimization (Dagstuhl Seminar 23332)

Authors: Diederick Vermetten, Martin S. Krejca, Marius Lindauer, Manuel López-Ibáñez, and Katherine M. Malan

Published in: Dagstuhl Reports, Volume 13, Issue 8 (2024)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23332, which focused on automated algorithm design (AAD) for optimization. AAD aims to propose good algorithms and/or parameters thereof for optimization problems in an automated fashion, instead of forcing this decision on the user. As such, AAD is applicable in a variety of domains. The seminar brought together a diverse, international set of researchers from AAD and closely related fields. Especially, we invited people from both the empirical and the theoretical domain. A main goal of the seminar was to enable vivid discussions between these two groups in order to synergize the knowledge from either domain, thus advancing the area of AAD as a whole, and to reduce the gap between theory and practice. Over the course of the seminar, a good mix of breakout sessions and talks took place, which were very well received and which we detail in this report. Efforts to synergize theory and practice bore some fruit, and other important aspects of AAD were highlighted and discussed. Overall, the seminar was a huge success.

Cite as

Diederick Vermetten, Martin S. Krejca, Marius Lindauer, Manuel López-Ibáñez, and Katherine M. Malan. Synergizing Theory and Practice of Automated Algorithm Design for Optimization (Dagstuhl Seminar 23332). In Dagstuhl Reports, Volume 13, Issue 8, pp. 46-70, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{vermetten_et_al:DagRep.13.8.46,
  author =	{Vermetten, Diederick and Krejca, Martin S. and Lindauer, Marius and L\'{o}pez-Ib\'{a}\~{n}ez, Manuel and Malan, Katherine M.},
  title =	{{Synergizing Theory and Practice of Automated Algorithm Design for Optimization (Dagstuhl Seminar 23332)}},
  pages =	{46--70},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{8},
  editor =	{Vermetten, Diederick and Krejca, Martin S. and Lindauer, Marius and L\'{o}pez-Ib\'{a}\~{n}ez, Manuel and Malan, Katherine M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.8.46},
  URN =		{urn:nbn:de:0030-drops-198128},
  doi =		{10.4230/DagRep.13.8.46},
  annote =	{Keywords: automated algorithm design, hyper-parameter tuning, parameter control, heuristic optimization, black-box optimization}
}
Document
On a Hierarchy of Spectral Invariants for Graphs

Authors: V. Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We consider a hierarchy of graph invariants that naturally extends the spectral invariants defined by Fürer (Lin. Alg. Appl. 2010) based on the angles formed by the set of standard basis vectors and their projections onto eigenspaces of the adjacency matrix. We provide a purely combinatorial characterization of this hierarchy in terms of the walk counts. This allows us to give a complete answer to Fürer’s question about the strength of his invariants in distinguishing non-isomorphic graphs in comparison to the 2-dimensional Weisfeiler-Leman algorithm, extending the recent work of Rattan and Seppelt (SODA 2023). As another application of the characterization, we prove that almost all graphs are determined up to isomorphism in terms of the spectrum and the angles, which is of interest in view of the long-standing open problem whether almost all graphs are determined by their eigenvalues alone. Finally, we describe the exact relationship between the hierarchy and the Weisfeiler-Leman algorithms for small dimensions, as also some other important spectral characteristics of a graph such as the generalized and the main spectra.

Cite as

V. Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On a Hierarchy of Spectral Invariants for Graphs. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arvind_et_al:LIPIcs.STACS.2024.6,
  author =	{Arvind, V. and Fuhlbr\"{u}ck, Frank and K\"{o}bler, Johannes and Verbitsky, Oleg},
  title =	{{On a Hierarchy of Spectral Invariants for Graphs}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.6},
  URN =		{urn:nbn:de:0030-drops-197166},
  doi =		{10.4230/LIPIcs.STACS.2024.6},
  annote =	{Keywords: Graph Isomorphism, spectra of graphs, combinatorial refinement, strongly regular graphs}
}
Document
Testing Equivalence to Design Polynomials

Authors: Omkar Baraskar, Agrim Dewan, and Chandan Saha

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
An n-variate polynomial g of degree d is a (n,d,t) design polynomial if the degree of the gcd of every pair of monomials of g is at most t-1. The power symmetric polynomial PSym_{n,d} : = ∑_{i = 1}ⁿ x^d_i and the sum-product polynomial SP_{s,d} : = ∑_{i = 1}^{s}∏_{j = 1}^{d} x_{i,j} are instances of design polynomials for t = 1. Another example is the Nisan-Wigderson design polynomial NW, which has been used extensively to prove various arithmetic circuit lower bounds. Given black-box access to an n-variate, degree-d polynomial f(𝐱) ∈ 𝔽[𝐱], how fast can we check if there exist an A ∈ GL(n, 𝔽) and a 𝐛 ∈ 𝔽ⁿ such that f(A𝐱+𝐛) is a (n,d,t) design polynomial? We call this problem "testing equivalence to design polynomials", or alternatively, "equivalence testing for design polynomials". In this work, we present a randomized algorithm that finds (A, 𝐛) such that f(A𝐱+𝐛) is a (n,d,t) design polynomial, if such A and 𝐛 exist, provided t ≤ d/3. The algorithm runs in (nd)^O(t) time and works over any sufficiently large 𝔽 of characteristic 0 or > d. As applications of this test, we show two results - one is structural and the other is algorithmic. The structural result establishes a polynomial-time equivalence between the graph isomorphism problem and the polynomial equivalence problem for design polynomials. The algorithmic result implies that Patarin’s scheme (EUROCRYPT 1996) can be broken in quasi-polynomial time if a random sparse polynomial is used in the key generation phase. We also give an efficient learning algorithm for n-variate random affine projections of multilinear degree-d design polynomials, provided n ≥ d⁴. If one obtains an analogous result under the weaker assumption "n ≥ d^ε, for any ε > 0", then the NW family is not VNP-complete unless there is a VNP-complete family whose random affine projections are learnable. It is not known if random affine projections of the permanent are learnable. The above algorithms are obtained by using the vector space decomposition framework, introduced by Kayal and Saha (STOC 2019) and Garg, Kayal and Saha (FOCS 2020), for learning non-degenerate arithmetic circuits. A key technical difference between the analysis in the papers by Garg, Kayal and Saha (FOCS 2020) and Bhargava, Garg, Kayal and Saha (RANDOM 2022) and the analysis here is that a certain adjoint algebra, which turned out to be trivial (i.e., diagonalizable) in prior works, is non-trivial in our case. However, we show that the adjoint arising here is triangularizable which then helps in carrying out the vector space decomposition step.

Cite as

Omkar Baraskar, Agrim Dewan, and Chandan Saha. Testing Equivalence to Design Polynomials. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 9:1-9:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baraskar_et_al:LIPIcs.STACS.2024.9,
  author =	{Baraskar, Omkar and Dewan, Agrim and Saha, Chandan},
  title =	{{Testing Equivalence to Design Polynomials}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{9:1--9:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.9},
  URN =		{urn:nbn:de:0030-drops-197193},
  doi =		{10.4230/LIPIcs.STACS.2024.9},
  annote =	{Keywords: Polynomial equivalence, design polynomials, graph isomorphism, vector space decomposition}
}
Document
Expressive Quantale-Valued Logics for Coalgebras: An Adjunction-Based Approach

Authors: Harsh Beohar, Sebastian Gurke, Barbara König, Karla Messing, Jonas Forster, Lutz Schröder, and Paul Wild

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We address the task of deriving fixpoint equations from modal logics characterizing behavioural equivalences and metrics (summarized under the term conformances). We rely on an earlier work that obtains Hennessy-Milner theorems as corollaries to a fixpoint preservation property along Galois connections between suitable lattices. We instantiate this to the setting of coalgebras, in which we spell out the compatibility property ensuring that we can derive a behaviour function whose greatest fixpoint coincides with the logical conformance. We then concentrate on the linear-time case, for which we study coalgebras based on the machine functor living in Eilenberg-Moore categories, a scenario for which we obtain a particularly simple logic and fixpoint equation. The theory is instantiated to concrete examples, both in the branching-time case (bisimilarity and behavioural metrics) and in the linear-time case (trace equivalences and trace distances).

Cite as

Harsh Beohar, Sebastian Gurke, Barbara König, Karla Messing, Jonas Forster, Lutz Schröder, and Paul Wild. Expressive Quantale-Valued Logics for Coalgebras: An Adjunction-Based Approach. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 10:1-10:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{beohar_et_al:LIPIcs.STACS.2024.10,
  author =	{Beohar, Harsh and Gurke, Sebastian and K\"{o}nig, Barbara and Messing, Karla and Forster, Jonas and Schr\"{o}der, Lutz and Wild, Paul},
  title =	{{Expressive Quantale-Valued Logics for Coalgebras: An Adjunction-Based Approach}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{10:1--10:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.10},
  URN =		{urn:nbn:de:0030-drops-197203},
  doi =		{10.4230/LIPIcs.STACS.2024.10},
  annote =	{Keywords: modal logics, coalgebras, behavioural equivalences, behavioural metrics, linear-time semantics, Eilenberg-Moore categories}
}
  • Refine by Author
  • 69 Saurabh, Saket
  • 47 Lokshtanov, Daniel
  • 46 Henriques, Pedro Rangel
  • 44 Queirós, Ricardo
  • 40 Simões, Alberto
  • Show More...

  • Refine by Classification
  • 301 Theory of computation → Design and analysis of algorithms
  • 274 Theory of computation → Computational geometry
  • 205 Theory of computation → Graph algorithms analysis
  • 176 Mathematics of computing → Graph algorithms
  • 167 Theory of computation → Parameterized complexity and exact algorithms
  • Show More...

  • Refine by Keyword
  • 115 approximation algorithms
  • 77 Approximation Algorithms
  • 69 parameterized complexity
  • 67 lower bounds
  • 50 Parameterized Complexity
  • Show More...

  • Refine by Type
  • 5408 document

  • Refine by Publication Year
  • 638 2018
  • 622 2023
  • 529 2019
  • 529 2020
  • 525 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail