4 Search Results for "Lewis, Robert Y."


Document
Formalized functional analysis with semilinear maps

Authors: Frédéric Dupuis, Robert Y. Lewis, and Heather Macbeth

Published in: LIPIcs, Volume 237, 13th International Conference on Interactive Theorem Proving (ITP 2022)


Abstract
Semilinear maps are a generalization of linear maps between vector spaces where we allow the scalar action to be twisted by a ring homomorphism such as complex conjugation. In particular, this generalization unifies the concepts of linear and conjugate-linear maps. We implement this generalization in Lean’s mathlib library, along with a number of important results in functional analysis which previously were impossible to formalize properly. Specifically, we prove the Fréchet-Riesz representation theorem and the spectral theorem for compact self-adjoint operators generically over real and complex Hilbert spaces. We also show that semilinear maps have applications beyond functional analysis by formalizing the one-dimensional case of a theorem of Dieudonné and Manin that classifies the isocrystals over an algebraically closed field with positive characteristic.

Cite as

Frédéric Dupuis, Robert Y. Lewis, and Heather Macbeth. Formalized functional analysis with semilinear maps. In 13th International Conference on Interactive Theorem Proving (ITP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 237, pp. 10:1-10:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dupuis_et_al:LIPIcs.ITP.2022.10,
  author =	{Dupuis, Fr\'{e}d\'{e}ric and Lewis, Robert Y. and Macbeth, Heather},
  title =	{{Formalized functional analysis with semilinear maps}},
  booktitle =	{13th International Conference on Interactive Theorem Proving (ITP 2022)},
  pages =	{10:1--10:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-252-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{237},
  editor =	{Andronick, June and de Moura, Leonardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.10},
  URN =		{urn:nbn:de:0030-drops-167191},
  doi =		{10.4230/LIPIcs.ITP.2022.10},
  annote =	{Keywords: Functional analysis, Lean, linear algebra, semilinear, Hilbert space}
}
Document
Formalizing the Divergence Theorem and the Cauchy Integral Formula in Lean

Authors: Yury Kudryashov

Published in: LIPIcs, Volume 237, 13th International Conference on Interactive Theorem Proving (ITP 2022)


Abstract
I formalize a version of the divergence theorem for a function on a rectangular box that does not assume regularity of individual partial derivatives, only Fréchet differentiability of the vector field and integrability of its divergence. Then I use this theorem to prove the Cauchy-Goursat theorem (for some simple domains) and bootstrap complex analysis in the Lean mathematical library. The main tool is the GP-integral, a version of the Henstock-Kurzweil integral introduced by J. Mawhin in 1981. The divergence theorem for this integral does not require integrability of the divergence.

Cite as

Yury Kudryashov. Formalizing the Divergence Theorem and the Cauchy Integral Formula in Lean. In 13th International Conference on Interactive Theorem Proving (ITP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 237, pp. 23:1-23:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kudryashov:LIPIcs.ITP.2022.23,
  author =	{Kudryashov, Yury},
  title =	{{Formalizing the Divergence Theorem and the Cauchy Integral Formula in Lean}},
  booktitle =	{13th International Conference on Interactive Theorem Proving (ITP 2022)},
  pages =	{23:1--23:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-252-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{237},
  editor =	{Andronick, June and de Moura, Leonardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.23},
  URN =		{urn:nbn:de:0030-drops-167326},
  doi =		{10.4230/LIPIcs.ITP.2022.23},
  annote =	{Keywords: divergence theorem, Green’s theorem, Gauge integral, Cauchy integral formula, Cauchy-Goursat theorem, complex analysis}
}
Document
A Graphical User Interface Framework for Formal Verification

Authors: Edward W. Ayers, Mateja Jamnik, and W. T. Gowers

Published in: LIPIcs, Volume 193, 12th International Conference on Interactive Theorem Proving (ITP 2021)


Abstract
We present the "ProofWidgets" framework for implementing general user interfaces (UIs) within an interactive theorem prover. The framework uses web technology and functional reactive programming, as well as metaprogramming features of advanced interactive theorem proving (ITP) systems to allow users to create arbitrary interactive UIs for representing the goal state. Users of the framework can create GUIs declaratively within the ITP’s metaprogramming language, without having to develop in multiple languages and without coordinated changes across multiple projects, which improves development time for new designs of UI. The ProofWidgets framework also allows UIs to make use of the full context of the theorem prover and the specialised libraries that ITPs offer, such as methods for dealing with expressions and tactics. The framework includes an extensible structured pretty-printing engine that enables advanced interaction with expressions such as interactive term rewriting. We exemplify the framework with an implementation for the https://leanprover-community.github.io. The framework is already in use by hundreds of contributors to the Lean mathematical library.

Cite as

Edward W. Ayers, Mateja Jamnik, and W. T. Gowers. A Graphical User Interface Framework for Formal Verification. In 12th International Conference on Interactive Theorem Proving (ITP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 193, pp. 4:1-4:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ayers_et_al:LIPIcs.ITP.2021.4,
  author =	{Ayers, Edward W. and Jamnik, Mateja and Gowers, W. T.},
  title =	{{A Graphical User Interface Framework for Formal Verification}},
  booktitle =	{12th International Conference on Interactive Theorem Proving (ITP 2021)},
  pages =	{4:1--4:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-188-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{193},
  editor =	{Cohen, Liron and Kaliszyk, Cezary},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.4},
  URN =		{urn:nbn:de:0030-drops-138996},
  doi =		{10.4230/LIPIcs.ITP.2021.4},
  annote =	{Keywords: User Interfaces, ITP}
}
Document
Formalizing the Solution to the Cap Set Problem

Authors: Sander R. Dahmen, Johannes Hölzl, and Robert Y. Lewis

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
In 2016, Ellenberg and Gijswijt established a new upper bound on the size of subsets of F^n_q with no three-term arithmetic progression. This problem has received much mathematical attention, particularly in the case q = 3, where it is commonly known as the cap set problem. Ellenberg and Gijswijt’s proof was published in the Annals of Mathematics and is noteworthy for its clever use of elementary methods. This paper describes a formalization of this proof in the Lean proof assistant, including both the general result in F^n_q and concrete values for the case q = 3. We faithfully follow the pen and paper argument to construct the bound. Our work shows that (some) modern mathematics is within the range of proof assistants.

Cite as

Sander R. Dahmen, Johannes Hölzl, and Robert Y. Lewis. Formalizing the Solution to the Cap Set Problem. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dahmen_et_al:LIPIcs.ITP.2019.15,
  author =	{Dahmen, Sander R. and H\"{o}lzl, Johannes and Lewis, Robert Y.},
  title =	{{Formalizing the Solution to the Cap Set Problem}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{15:1--15:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.15},
  URN =		{urn:nbn:de:0030-drops-110703},
  doi =		{10.4230/LIPIcs.ITP.2019.15},
  annote =	{Keywords: formal proof, combinatorics, cap set problem, Lean}
}
  • Refine by Author
  • 2 Lewis, Robert Y.
  • 1 Ayers, Edward W.
  • 1 Dahmen, Sander R.
  • 1 Dupuis, Frédéric
  • 1 Gowers, W. T.
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Combinatorial algorithms
  • 1 Mathematics of computing → Functional analysis
  • 1 Mathematics of computing → Integral calculus
  • 1 Mathematics of computing → Number-theoretic computations
  • 1 Security and privacy → Logic and verification
  • Show More...

  • Refine by Keyword
  • 2 Lean
  • 1 Cauchy integral formula
  • 1 Cauchy-Goursat theorem
  • 1 Functional analysis
  • 1 Gauge integral
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2022
  • 1 2019
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail