4 Search Results for "Lin, Bingkai"


Document
FPT Approximation Using Treewidth: Capacitated Vertex Cover, Target Set Selection and Vector Dominating Set

Authors: Huairui Chu and Bingkai Lin

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
Treewidth is a useful tool in designing graph algorithms. Although many NP-hard graph problems can be solved in linear time when the input graphs have small treewidth, there are problems which remain hard on graphs of bounded treewidth. In this paper, we consider three vertex selection problems that are W[1]-hard when parameterized by the treewidth of the input graph, namely the capacitated vertex cover problem, the target set selection problem and the vector dominating set problem. We provide two new methods to obtain FPT approximation algorithms for these problems. For the capacitated vertex cover problem and the vector dominating set problem, we obtain (1+o(1))-approximation FPT algorithms. For the target set selection problem, we give an FPT algorithm providing a tradeoff between its running time and the approximation ratio.

Cite as

Huairui Chu and Bingkai Lin. FPT Approximation Using Treewidth: Capacitated Vertex Cover, Target Set Selection and Vector Dominating Set. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 19:1-19:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chu_et_al:LIPIcs.ISAAC.2023.19,
  author =	{Chu, Huairui and Lin, Bingkai},
  title =	{{FPT Approximation Using Treewidth: Capacitated Vertex Cover, Target Set Selection and Vector Dominating Set}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{19:1--19:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.19},
  URN =		{urn:nbn:de:0030-drops-193216},
  doi =		{10.4230/LIPIcs.ISAAC.2023.19},
  annote =	{Keywords: FPT approximation algorithm, Treewidth, Capacitated vertex cover, Target set selection, Vector dominating set}
}
Document
Track A: Algorithms, Complexity and Games
On Lower Bounds of Approximating Parameterized k-Clique

Authors: Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Given a simple graph G and an integer k, the goal of the k-Clique problem is to decide if G contains a complete subgraph of size k. We say an algorithm approximates k-Clique within a factor g(k) if it can find a clique of size at least k/g(k) when G is guaranteed to have a k-clique. Recently, it was shown that approximating k-Clique within a constant factor is W[1]-hard [Bingkai Lin, 2021]. We study the approximation of k-Clique under the Exponential Time Hypothesis (ETH). The reduction of [Bingkai Lin, 2021] already implies an n^Ω(√[6]{log k})-time lower bound under ETH. We improve this lower bound to n^Ω(log k). Using the gap-amplification technique by expander graphs, we also prove that there is no k^o(1) factor FPT-approximation algorithm for k-Clique under ETH. We also suggest a new way to prove the Parameterized Inapproximability Hypothesis (PIH) under ETH. We show that if there is no n^O(k/(log k))-time algorithm to approximate k-Clique within a constant factor, then PIH is true.

Cite as

Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. On Lower Bounds of Approximating Parameterized k-Clique. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 90:1-90:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lin_et_al:LIPIcs.ICALP.2022.90,
  author =	{Lin, Bingkai and Ren, Xuandi and Sun, Yican and Wang, Xiuhan},
  title =	{{On Lower Bounds of Approximating Parameterized k-Clique}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{90:1--90:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.90},
  URN =		{urn:nbn:de:0030-drops-164317},
  doi =		{10.4230/LIPIcs.ICALP.2022.90},
  annote =	{Keywords: parameterized complexity, k-clique, hardness of approximation}
}
Document
Track A: Algorithms, Complexity and Games
A Simple Gap-Producing Reduction for the Parameterized Set Cover Problem

Authors: Bingkai Lin

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
Given an n-vertex bipartite graph I=(S,U,E), the goal of set cover problem is to find a minimum sized subset of S such that every vertex in U is adjacent to some vertex of this subset. It is NP-hard to approximate set cover to within a (1-o(1))ln n factor [I. Dinur and D. Steurer, 2014]. If we use the size of the optimum solution k as the parameter, then it can be solved in n^{k+o(1)} time [Eisenbrand and Grandoni, 2004]. A natural question is: can we approximate set cover to within an o(ln n) factor in n^{k-epsilon} time? In a recent breakthrough result[Karthik et al., 2018], Karthik, Laekhanukit and Manurangsi showed that assuming the Strong Exponential Time Hypothesis (SETH), for any computable function f, no f(k)* n^{k-epsilon}-time algorithm can approximate set cover to a factor below (log n)^{1/poly(k,e(epsilon))} for some function e. This paper presents a simple gap-producing reduction which, given a set cover instance I=(S,U,E) and two integers k<h <=(1-o(1))sqrt[k]{log |S|/log log |S|}, outputs a new set cover instance I'=(S,U',E') with |U'|=|U|^{h^k}|S|^{O(1)} in |U|^{h^k}* |S|^{O(1)} time such that - if I has a k-sized solution, then so does I'; - if I has no k-sized solution, then every solution of I' must contain at least h vertices. Setting h=(1-o(1))sqrt[k]{log |S|/log log |S|}, we show that assuming SETH, for any computable function f, no f(k)* n^{k-epsilon}-time algorithm can distinguish between a set cover instance with k-sized solution and one whose minimum solution size is at least (1-o(1))* sqrt[k]((log n)/(log log n)). This improves the result in [Karthik et al., 2018].

Cite as

Bingkai Lin. A Simple Gap-Producing Reduction for the Parameterized Set Cover Problem. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 81:1-81:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{lin:LIPIcs.ICALP.2019.81,
  author =	{Lin, Bingkai},
  title =	{{A Simple Gap-Producing Reduction for the Parameterized Set Cover Problem}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{81:1--81:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.81},
  URN =		{urn:nbn:de:0030-drops-106573},
  doi =		{10.4230/LIPIcs.ICALP.2019.81},
  annote =	{Keywords: set cover, FPT inapproximability, gap-producing reduction, (n, k)-universal set}
}
Document
Track A: Algorithms, Complexity and Games
Short Proofs Are Hard to Find

Authors: Ian Mertz, Toniann Pitassi, and Yuanhao Wei

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We obtain a streamlined proof of an important result by Alekhnovich and Razborov [Michael Alekhnovich and Alexander A. Razborov, 2008], showing that it is hard to automatize both tree-like and general Resolution. Under a different assumption than [Michael Alekhnovich and Alexander A. Razborov, 2008], our simplified proof gives improved bounds: we show under ETH that these proof systems are not automatizable in time n^f(n), whenever f(n) = o(log^{1/7 - epsilon} log n) for any epsilon > 0. Previously non-automatizability was only known for f(n) = O(1). Our proof also extends fairly straightforwardly to prove similar hardness results for PCR and Res(r).

Cite as

Ian Mertz, Toniann Pitassi, and Yuanhao Wei. Short Proofs Are Hard to Find. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 84:1-84:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{mertz_et_al:LIPIcs.ICALP.2019.84,
  author =	{Mertz, Ian and Pitassi, Toniann and Wei, Yuanhao},
  title =	{{Short Proofs Are Hard to Find}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{84:1--84:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.84},
  URN =		{urn:nbn:de:0030-drops-106605},
  doi =		{10.4230/LIPIcs.ICALP.2019.84},
  annote =	{Keywords: automatizability, Resolution, SAT solvers, proof complexity}
}
  • Refine by Author
  • 3 Lin, Bingkai
  • 1 Chu, Huairui
  • 1 Mertz, Ian
  • 1 Pitassi, Toniann
  • 1 Ren, Xuandi
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Problems, reductions and completeness
  • 1 Hardware → Theorem proving and SAT solving
  • 1 Theory of computation → Fixed parameter tractability
  • 1 Theory of computation → Proof complexity

  • Refine by Keyword
  • 1 (n
  • 1 Capacitated vertex cover
  • 1 FPT approximation algorithm
  • 1 FPT inapproximability
  • 1 Resolution
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2019
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail