214 Search Results for "M�rton, Peter"


Document
Decremental Sensitivity Oracles for Covering and Packing Minors

Authors: Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Peter Strulo

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In this paper, we present the first decremental fixed-parameter sensitivity oracles for a number of basic covering and packing problems on graphs. In particular, we obtain the first decremental sensitivity oracles for Vertex Planarization (delete k vertices to make the graph planar) and Cycle Packing (pack k vertex-disjoint cycles in the given graph). That is, we give a sensitivity oracle that preprocesses the given graph in time f(k,𝓁)n^{{O}(1)} such that, when given a set of 𝓁 edge deletions, the data structure decides in time f(k,𝓁) whether the updated graph is a positive instance of the problem. These results are obtained as a corollary of our central result, which is the first decremental sensitivity oracle for Topological Minor Deletion (cover all topological minors in the input graph that belong to a specified set, using k vertices). Though our methodology closely follows the literature, we are able to produce the first explicit bounds on the preprocessing and query times for several problems. We also initiate the study of fixed-parameter sensitivity oracles with so-called structural parameterizations and give sufficient conditions for the existence of fixed-parameter sensitivity oracles where the parameter is just the treewidth of the graph. In contrast, all existing literature on this topic and the aforementioned results in this paper assume a bound on the solution size (a weaker parameter than treewidth for many problems). As corollaries, we obtain decremental sensitivity oracles for well-studied problems such as Vertex Cover and Dominating Set when only the treewidth of the input graph is bounded. A feature of our methodology behind these results is that we are able to obtain query times independent of treewidth.

Cite as

Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Peter Strulo. Decremental Sensitivity Oracles for Covering and Packing Minors. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 44:1-44:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kanesh_et_al:LIPIcs.STACS.2024.44,
  author =	{Kanesh, Lawqueen and Panolan, Fahad and Ramanujan, M. S. and Strulo, Peter},
  title =	{{Decremental Sensitivity Oracles for Covering and Packing Minors}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{44:1--44:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.44},
  URN =		{urn:nbn:de:0030-drops-197544},
  doi =		{10.4230/LIPIcs.STACS.2024.44},
  annote =	{Keywords: Sensitivity oracles, Data Structures, FPT algorithms}
}
Document
Theoretical Advances and Emerging Applications in Abstract Interpretation (Dagstuhl Seminar 23281)

Authors: Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Müller, and Anna Becchi

Published in: Dagstuhl Reports, Volume 13, Issue 7 (2024)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23281 "Theoretical Advances and Emerging Applications in Abstract Interpretation." Abstract Interpretation (AI) is a theory of the approximation of program semantics. Since its introduction in the 70s, it lead to insights into theoretical research in semantics, a rich and robust mathematical framework to discuss about semantic approximation and program analysis, and the design of effective program analysis tools that are now routinely used in this industry. The seminar brought together academic and industrial partners to assess the state of the art in AI as well as discuss its future. It considered its foundational aspects, connections with other formal methods, emergent applications, user needs in program verification, tool design and evaluation, as well as educational aspects and community management. Its goal was to collect new ideas and new perspectives on all these aspects of AI in order to pave the way for new applications.

Cite as

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Müller, and Anna Becchi. Theoretical Advances and Emerging Applications in Abstract Interpretation (Dagstuhl Seminar 23281). In Dagstuhl Reports, Volume 13, Issue 7, pp. 66-95, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{gurfinkel_et_al:DagRep.13.7.66,
  author =	{Gurfinkel, Arie and Mastroeni, Isabella and Min\'{e}, Antoine and M\"{u}ller, Peter and Becchi, Anna},
  title =	{{Theoretical Advances and Emerging Applications in Abstract Interpretation (Dagstuhl Seminar 23281)}},
  pages =	{66--95},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{7},
  editor =	{Gurfinkel, Arie and Mastroeni, Isabella and Min\'{e}, Antoine and M\"{u}ller, Peter and Becchi, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.7.66},
  URN =		{urn:nbn:de:0030-drops-197759},
  doi =		{10.4230/DagRep.13.7.66},
  annote =	{Keywords: abstract domains, abstract interpretation, program semantics, program verification, static program analysis}
}
Document
The Message Complexity of Distributed Graph Optimization

Authors: Fabien Dufoulon, Shreyas Pai, Gopal Pandurangan, Sriram V. Pemmaraju, and Peter Robinson

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
The message complexity of a distributed algorithm is the total number of messages sent by all nodes over the course of the algorithm. This paper studies the message complexity of distributed algorithms for fundamental graph optimization problems. We focus on four classical graph optimization problems: Maximum Matching (MaxM), Minimum Vertex Cover (MVC), Minimum Dominating Set (MDS), and Maximum Independent Set (MaxIS). In the sequential setting, these problems are representative of a wide spectrum of hardness of approximation. While there has been some progress in understanding the round complexity of distributed algorithms (for both exact and approximate versions) for these problems, much less is known about their message complexity and its relation with the quality of approximation. We almost fully quantify the message complexity of distributed graph optimization by showing the following results: 1) Cubic regime: Our first main contribution is showing essentially cubic, i.e., Ω̃(n³) lower bounds (where n is the number of nodes in the graph) on the message complexity of distributed exact computation of Minimum Vertex Cover (MVC), Minimum Dominating Set (MDS), and Maximum Independent Set (MaxIS). Our lower bounds apply to any distributed algorithm that runs in polynomial number of rounds (a mild and necessary restriction). Our result is significant since, to the best of our knowledge, this are the first ω(m) (where m is the number of edges in the graph) message lower bound known for distributed computation of such classical graph optimization problems. Our bounds are essentially tight, as all these problems can be solved trivially using O(n³) messages in polynomial rounds. All these bounds hold in the standard CONGEST model of distributed computation in which messages are of O(log n) size. 2) Quadratic regime: In contrast, we show that if we allow approximate computation then Θ̃(n²) messages are both necessary and sufficient. Specifically, we show that Ω̃(n²) messages are required for constant-factor approximation algorithms for all four problems. For MaxM and MVC, these bounds hold for any constant-factor approximation, whereas for MDS and MaxIS they hold for any approximation factor better than some specific constants. These lower bounds hold even in the LOCAL model (in which messages can be arbitrarily large) and they even apply to algorithms that take arbitrarily many rounds. We show that our lower bounds are essentially tight, by showing that if we allow approximation to within an arbitrarily small constant factor, then all these problems can be solved using Õ(n²) messages even in the CONGEST model. 3) Linear regime: We complement the above lower bounds by showing distributed algorithms with Õ(n) message complexity that run in polylogarithmic rounds and give constant-factor approximations for all four problems on random graphs. These results imply that almost linear (in n) message complexity is achievable on almost all (connected) graphs of every edge density.

Cite as

Fabien Dufoulon, Shreyas Pai, Gopal Pandurangan, Sriram V. Pemmaraju, and Peter Robinson. The Message Complexity of Distributed Graph Optimization. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 41:1-41:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dufoulon_et_al:LIPIcs.ITCS.2024.41,
  author =	{Dufoulon, Fabien and Pai, Shreyas and Pandurangan, Gopal and Pemmaraju, Sriram V. and Robinson, Peter},
  title =	{{The Message Complexity of Distributed Graph Optimization}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{41:1--41:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.41},
  URN =		{urn:nbn:de:0030-drops-195690},
  doi =		{10.4230/LIPIcs.ITCS.2024.41},
  annote =	{Keywords: Distributed graph algorithm, message complexity, distributed approximation}
}
Document
Parameterized Complexity Classification for Interval Constraints

Authors: Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Marcin Pilipczuk, and Roohani Sharma

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
Constraint satisfaction problems form a nicely behaved class of problems that lends itself to complexity classification results. From the point of view of parameterized complexity, a natural task is to classify the parameterized complexity of MinCSP problems parameterized by the number of unsatisfied constraints. In other words, we ask whether we can delete at most k constraints, where k is the parameter, to get a satisfiable instance. In this work, we take a step towards classifying the parameterized complexity for an important infinite-domain CSP: Allen’s interval algebra (IA). This CSP has closed intervals with rational endpoints as domain values and employs a set A of 13 basic comparison relations such as "precedes" or "during" for relating intervals. IA is a highly influential and well-studied formalism within AI and qualitative reasoning that has numerous applications in, for instance, planning, natural language processing and molecular biology. We provide an FPT vs. W[1]-hard dichotomy for MinCSP(Γ) for all Γ ⊆ A. IA is sometimes extended with unions of the relations in A or first-order definable relations over A, but extending our results to these cases would require first solving the parameterized complexity of Directed Symmetric Multicut, which is a notorious open problem. Already in this limited setting, we uncover connections to new variants of graph cut and separation problems. This includes hardness proofs for simultaneous cuts or feedback arc set problems in directed graphs, as well as new tractable cases with algorithms based on the recently introduced flow augmentation technique. Given the intractability of MinCSP(A) in general, we then consider (parameterized) approximation algorithms. We first show that MinCSP(A) cannot be polynomial-time approximated within any constant factor and continue by presenting a factor-2 fpt-approximation algorithm. Once again, this algorithm has its roots in flow augmentation.

Cite as

Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Marcin Pilipczuk, and Roohani Sharma. Parameterized Complexity Classification for Interval Constraints. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dabrowski_et_al:LIPIcs.IPEC.2023.11,
  author =	{Dabrowski, Konrad K. and Jonsson, Peter and Ordyniak, Sebastian and Osipov, George and Pilipczuk, Marcin and Sharma, Roohani},
  title =	{{Parameterized Complexity Classification for Interval Constraints}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.11},
  URN =		{urn:nbn:de:0030-drops-194306},
  doi =		{10.4230/LIPIcs.IPEC.2023.11},
  annote =	{Keywords: (minimum) constraint satisfaction problem, Allen’s interval algebra, parameterized complexity, cut problems}
}
Document
Is the Algorithmic Kadison-Singer Problem Hard?

Authors: Ben Jourdan, Peter Macgregor, and He Sun

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
We study the following KS₂(c) problem: let c ∈ ℝ^+ be some constant, and v₁,…, v_m ∈ ℝ^d be vectors such that ‖v_i‖² ≤ α for any i ∈ [m] and ∑_{i=1}^m ⟨v_i, x⟩² = 1 for any x ∈ ℝ^d with ‖x‖ = 1. The KS₂(c) problem asks to find some S ⊂ [m], such that it holds for all x ∈ ℝ^d with ‖x‖ = 1 that |∑_{i∈S} ⟨v_i, x⟩² - 1/2| ≤ c⋅√α, or report no if such S doesn't exist. Based on the work of Marcus et al. [Adam Marcus et al., 2013] and Weaver [Nicholas Weaver, 2004], the KS₂(c) problem can be seen as the algorithmic Kadison-Singer problem with parameter c ∈ ℝ^+. Our first result is a randomised algorithm with one-sided error for the KS₂(c) problem such that (1) our algorithm finds a valid set S ⊂ [m] with probability at least 1-2/d, if such S exists, or (2) reports no with probability 1, if no valid sets exist. The algorithm has running time O(binom(m,n)⋅poly(m, d)) for n = O(d/ε² log(d) log(1/(c√α))), where ε is a parameter which controls the error of the algorithm. This presents the first algorithm for the Kadison-Singer problem whose running time is quasi-polynomial in m in a certain regime, although having exponential dependency on d. Moreover, it shows that the algorithmic Kadison-Singer problem is easier to solve in low dimensions. Our second result is on the computational complexity of the KS₂(c) problem. We show that the KS₂(1/(4√2)) problem is FNP-hard for general values of d, and solving the KS₂(1/(4√2)) problem is as hard as solving the NAE-3SAT problem.

Cite as

Ben Jourdan, Peter Macgregor, and He Sun. Is the Algorithmic Kadison-Singer Problem Hard?. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 43:1-43:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{jourdan_et_al:LIPIcs.ISAAC.2023.43,
  author =	{Jourdan, Ben and Macgregor, Peter and Sun, He},
  title =	{{Is the Algorithmic Kadison-Singer Problem Hard?}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{43:1--43:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.43},
  URN =		{urn:nbn:de:0030-drops-193457},
  doi =		{10.4230/LIPIcs.ISAAC.2023.43},
  annote =	{Keywords: Kadison-Singer problem, spectral sparsification}
}
Document
Short Paper
Application of GIS in Public Health Practice: A Consortium’s Approach to Tackling Travel Delays in Obstetric Emergencies in Urban Areas (Short Paper)

Authors: Jia Wang, Itohan Osayande, Peter M. Macharia, Prestige Tatenda Makanga, Kerry L. M. Wong, Tope Olubodun, Uchenna Gwacham-Anisiobi, Olakunmi Ogunyemi, Abimbola Olaniran, Ibukun-Oluwa O. Abejirinde, Lenka Beňová, Bosede B. Afolabi, and Aduragbemi Banke-Thomas

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Geographic Information System (GIS) has become an effective and reliable tool for researchers, policymakers, and decision-makers to map health outcomes and inform targeted planning, evaluation, and monitoring. With the advent of big data-enabled GIS, researchers can now identify disparities and spatial inequalities in health at more granular levels, enabling them to provide more accurate and robust services and products for healthcare. This paper aims to showcase the progress of the On Tackling In-transit Delays for Mothers in Emergency (OnTIME) project, which is a unique collaborative effort between academia, policymakers, and industrial partners. The paper demonstrates how the limitations of traditional spatial accessibility models and data gaps have been overcome by combining GIS and big data to map the geographic accessibility and coverage of health facilities capable of providing emergency obstetric care (EmOC) in conurbations in Africa. The OnTIME project employs various GIS technologies and concepts, such as big spatial data, spatial databases, and public participation geographic information systems (PPGIS). We provide an overview of these concepts in relation to the OnTIME project to demonstrate the application of GIS in public health practice.

Cite as

Jia Wang, Itohan Osayande, Peter M. Macharia, Prestige Tatenda Makanga, Kerry L. M. Wong, Tope Olubodun, Uchenna Gwacham-Anisiobi, Olakunmi Ogunyemi, Abimbola Olaniran, Ibukun-Oluwa O. Abejirinde, Lenka Beňová, Bosede B. Afolabi, and Aduragbemi Banke-Thomas. Application of GIS in Public Health Practice: A Consortium’s Approach to Tackling Travel Delays in Obstetric Emergencies in Urban Areas (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 79:1-79:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{wang_et_al:LIPIcs.GIScience.2023.79,
  author =	{Wang, Jia and Osayande, Itohan and Macharia, Peter M. and Makanga, Prestige Tatenda and Wong, Kerry L. M. and Olubodun, Tope and Gwacham-Anisiobi, Uchenna and Ogunyemi, Olakunmi and Olaniran, Abimbola and Abejirinde, Ibukun-Oluwa O. and Be\v{n}ov\'{a}, Lenka and Afolabi, Bosede B. and Banke-Thomas, Aduragbemi},
  title =	{{Application of GIS in Public Health Practice: A Consortium’s Approach to Tackling Travel Delays in Obstetric Emergencies in Urban Areas}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{79:1--79:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.79},
  URN =		{urn:nbn:de:0030-drops-189748},
  doi =		{10.4230/LIPIcs.GIScience.2023.79},
  annote =	{Keywords: GIS, Public Health, Accessibility, OnTIME, EmOC, Public Participation GIS, Big Data, Google}
}
Document
Incremental (1-ε)-Approximate Dynamic Matching in O(poly(1/ε)) Update Time

Authors: Joakim Blikstad and Peter Kiss

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
In the dynamic approximate maximum bipartite matching problem we are given bipartite graph G undergoing updates and our goal is to maintain a matching of G which is large compared the maximum matching size μ(G). We define a dynamic matching algorithm to be α (respectively (α, β))-approximate if it maintains matching M such that at all times |M | ≥ μ(G) ⋅ α (respectively |M| ≥ μ(G) ⋅ α - β). We present the first deterministic (1-ε)-approximate dynamic matching algorithm with O(poly(ε^{-1})) amortized update time for graphs undergoing edge insertions. Previous solutions either required super-constant [Gupta FSTTCS'14, Bhattacharya-Kiss-Saranurak SODA'23] or exponential in 1/ε [Grandoni-Leonardi-Sankowski-Schwiegelshohn-Solomon SODA'19] update time. Our implementation is arguably simpler than the mentioned algorithms and its description is self contained. Moreover, we show that if we allow for additive (1, ε⋅n)-approximation our algorithm seamlessly extends to also handle vertex deletions, on top of edge insertions. This makes our algorithm one of the few small update time algorithms for (1-ε)-approximate dynamic matching allowing for updates both increasing and decreasing the maximum matching size of G in a fully dynamic manner. Our algorithm relies on the weighted variant of the celebrated Edge-Degree-Constrained-Subgraph (EDCS) datastructure introduced by [Bernstein-Stein ICALP'15]. As far as we are aware we introduce the first application of the weighted-EDCS for arbitrarily dense graphs. We also present a significantly simplified proof for the approximation ratio of weighed-EDCS as a matching sparsifier compared to [Bernstein-Stein], as well as simple descriptions of a fractional matching and fractional vertex cover defined on top of the EDCS. Considering the wide range of applications EDCS has found in settings such as streaming, sub-linear, stochastic and more we hope our techniques will be of independent research interest outside of the dynamic setting.

Cite as

Joakim Blikstad and Peter Kiss. Incremental (1-ε)-Approximate Dynamic Matching in O(poly(1/ε)) Update Time. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 22:1-22:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{blikstad_et_al:LIPIcs.ESA.2023.22,
  author =	{Blikstad, Joakim and Kiss, Peter},
  title =	{{Incremental (1-\epsilon)-Approximate Dynamic Matching in O(poly(1/\epsilon)) Update Time}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.22},
  URN =		{urn:nbn:de:0030-drops-186756},
  doi =		{10.4230/LIPIcs.ESA.2023.22},
  annote =	{Keywords: Bipartite Matching, Incremental Matching, Dynamic Algorithms, Approximation Algorithms, EDCS}
}
Document
Pareto Sums of Pareto Sets

Authors: Demian Hespe, Peter Sanders, Sabine Storandt, and Carina Truschel

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
In bi-criteria optimization problems, the goal is typically to compute the set of Pareto-optimal solutions. Many algorithms for these types of problems rely on efficient merging or combining of partial solutions and filtering of dominated solutions in the resulting sets. In this paper, we consider the task of computing the Pareto sum of two given Pareto sets A, B of size n. The Pareto sum contains all non-dominated points of the Minkowski sum M = {a+b|a ∈ A, b ∈ B}. Since the Minkowski sum has a size of n², but the Pareto sum C can be much smaller, the goal is to compute C without having to compute and store all of M. We present several new algorithms for efficient Pareto sum computation, including an output-sensitive one with a running time of 𝒪(n log n + nk) and a space consumption of 𝒪(n+k) for k = |C|. We also describe suitable engineering techniques to improve the practical running times of our algorithms and provide a comparative experimental study. As one showcase application, we consider preprocessing-based methods for bi-criteria route planning in road networks. Pareto sum computation is a frequent task in the preprocessing phase. We show that using our algorithms with an output-sensitive space consumption allows to tackle larger instances and reduces the preprocessing time compared to algorithms that fully store M.

Cite as

Demian Hespe, Peter Sanders, Sabine Storandt, and Carina Truschel. Pareto Sums of Pareto Sets. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 60:1-60:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hespe_et_al:LIPIcs.ESA.2023.60,
  author =	{Hespe, Demian and Sanders, Peter and Storandt, Sabine and Truschel, Carina},
  title =	{{Pareto Sums of Pareto Sets}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{60:1--60:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.60},
  URN =		{urn:nbn:de:0030-drops-187132},
  doi =		{10.4230/LIPIcs.ESA.2023.60},
  annote =	{Keywords: Minkowski sum, Skyline, Successive Algorithm}
}
Document
Recognizing H-Graphs - Beyond Circular-Arc Graphs

Authors: Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
In 1992 Biró, Hujter and Tuza introduced, for every fixed connected graph H, the class of H-graphs, defined as the intersection graphs of connected subgraphs of some subdivision of H. Such classes of graphs are related to many known graph classes: for example, K₂-graphs coincide with interval graphs, K₃-graphs with circular-arc graphs, the union of T-graphs, where T ranges over all trees, coincides with chordal graphs. Recently, quite a lot of research has been devoted to understanding the tractability border for various computational problems, such as recognition or isomorphism testing, in classes of H-graphs for different graphs H. In this work we undertake this research topic, focusing on the recognition problem. Chaplick, Töpfer, Voborník, and Zeman showed an XP-algorithm testing whether a given graph is a T-graph, where the parameter is the size of the tree T. In particular, for every fixed tree T the recognition of T-graphs can be solved in polynomial time. Tucker showed a polynomial time algorithm recognizing K₃-graphs (circular-arc graphs). On the other hand, Chaplick et al. showed also that for every fixed graph H containing two distinct cycles sharing an edge, the recognition of H-graphs is NP-hard. The main two results of this work narrow the gap between the NP-hard and 𝖯 cases of H-graph recognition. First, we show that the recognition of H-graphs is NP-hard when H contains two distinct cycles. On the other hand, we show a polynomial-time algorithm recognizing L-graphs, where L is a graph containing a cycle and an edge attached to it (which we call lollipop graphs). Our work leaves open the recognition problems of M-graphs for every unicyclic graph M different from a cycle and a lollipop.

Cite as

Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman. Recognizing H-Graphs - Beyond Circular-Arc Graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{agaoglucagirici_et_al:LIPIcs.MFCS.2023.8,
  author =	{A\u{g}ao\u{g}lu \c{C}a\u{g}{\i}r{\i}c{\i}, Deniz and \c{C}a\u{g}{\i}r{\i}c{\i}, Onur and Derbisz, Jan and Hartmann, Tim A. and Hlin\v{e}n\'{y}, Petr and Kratochv{\'\i}l, Jan and Krawczyk, Tomasz and Zeman, Peter},
  title =	{{Recognizing H-Graphs - Beyond Circular-Arc Graphs}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{8:1--8:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.8},
  URN =		{urn:nbn:de:0030-drops-185420},
  doi =		{10.4230/LIPIcs.MFCS.2023.8},
  annote =	{Keywords: H-graphs, Intersection Graphs, Helly Property}
}
Document
A Univalent Formalization of Constructive Affine Schemes

Authors: Max Zeuner and Anders Mörtberg

Published in: LIPIcs, Volume 269, 28th International Conference on Types for Proofs and Programs (TYPES 2022)


Abstract
We present a formalization of constructive affine schemes in the Cubical Agda proof assistant. This development is not only fully constructive and predicative, it also makes crucial use of univalence. By now schemes have been formalized in various proof assistants. However, most existing formalizations follow the inherently non-constructive approach of Hartshorne’s classic "Algebraic Geometry" textbook, for which the construction of the so-called structure sheaf is rather straightforwardly formalizable and works the same with or without univalence. We follow an alternative approach that uses a point-free description of the constructive counterpart of the Zariski spectrum called the Zariski lattice and proceeds by defining the structure sheaf on formal basic opens and then lift it to the whole lattice. This general strategy is used in a plethora of textbooks, but formalizing it has proved tricky. The main result of this paper is that with the help of the univalence principle we can make this "lift from basis" strategy formal and obtain a fully formalized account of constructive affine schemes.

Cite as

Max Zeuner and Anders Mörtberg. A Univalent Formalization of Constructive Affine Schemes. In 28th International Conference on Types for Proofs and Programs (TYPES 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 269, pp. 14:1-14:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{zeuner_et_al:LIPIcs.TYPES.2022.14,
  author =	{Zeuner, Max and M\"{o}rtberg, Anders},
  title =	{{A Univalent Formalization of Constructive Affine Schemes}},
  booktitle =	{28th International Conference on Types for Proofs and Programs (TYPES 2022)},
  pages =	{14:1--14:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-285-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{269},
  editor =	{Kesner, Delia and P\'{e}drot, Pierre-Marie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2022.14},
  URN =		{urn:nbn:de:0030-drops-184574},
  doi =		{10.4230/LIPIcs.TYPES.2022.14},
  annote =	{Keywords: Affine Schemes, Homotopy Type Theory and Univalent Foundations, Cubical Agda, Constructive Mathematics}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Decremental Connectivity in Non-Sparse Graphs

Authors: Anders Aamand, Adam Karczmarz, Jakub Łącki, Nikos Parotsidis, Peter M. R. Rasmussen, and Mikkel Thorup

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We present a dynamic algorithm for maintaining the connected and 2-edge-connected components in an undirected graph subject to edge deletions. The algorithm is Monte-Carlo randomized and processes any sequence of edge deletions in O(m + n poly log n) total time. Interspersed with the deletions, it can answer queries whether any two given vertices currently belong to the same (2-edge-)connected component in constant time. Our result is based on a general Monte-Carlo randomized reduction from decremental c-edge-connectivity to a variant of fully-dynamic c-edge-connectivity on a sparse graph. For non-sparse graphs with Ω(n poly log n) edges, our connectivity and 2-edge-connectivity algorithms handle all deletions in optimal linear total time, using existing algorithms for the respective fully-dynamic problems. This improves upon an O(m log (n² / m) + n poly log n)-time algorithm of Thorup [J.Alg. 1999], which runs in linear time only for graphs with Ω(n²) edges. Our constant amortized cost for edge deletions in decremental connectivity in non-sparse graphs should be contrasted with an Ω(log n/log log n) worst-case time lower bound in the decremental setting [Alstrup, Husfeldt, and Rauhe FOCS'98] as well as an Ω(log n) amortized time lower-bound in the fully-dynamic setting [Patrascu and Demaine STOC'04].

Cite as

Anders Aamand, Adam Karczmarz, Jakub Łącki, Nikos Parotsidis, Peter M. R. Rasmussen, and Mikkel Thorup. Optimal Decremental Connectivity in Non-Sparse Graphs. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{aamand_et_al:LIPIcs.ICALP.2023.6,
  author =	{Aamand, Anders and Karczmarz, Adam and {\L}\k{a}cki, Jakub and Parotsidis, Nikos and Rasmussen, Peter M. R. and Thorup, Mikkel},
  title =	{{Optimal Decremental Connectivity in Non-Sparse Graphs}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{6:1--6:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.6},
  URN =		{urn:nbn:de:0030-drops-180581},
  doi =		{10.4230/LIPIcs.ICALP.2023.6},
  annote =	{Keywords: decremental connectivity, dynamic connectivity}
}
Document
Conf Researchr: A Domain-Specific Content Management System for Managing Large Conference Websites

Authors: Danny M. Groenewegen, Elmer van Chastelet, Max M. de Krieger, Daniel A. A. Pelsmaeker, and Craig Anslow

Published in: OASIcs, Volume 109, Eelco Visser Commemorative Symposium (EVCS 2023)


Abstract
Conferences are great opportunities for sharing research, debating solutions, and networking. For the organizing committee there is a considerable deal of complexity and effort required to provide attendees and organizers with ways to find and manage programs, sessions, papers, tracks, talks, and authors. Eelco Visser found an opportunity to provide an integrated solution to these problems by designing the Conf Researchr conference management system in 2014 using our own domain-specific web programming language WebDSL. In this paper, we highlight the impact Eelco had on conference management, and how Conf Researchr evolved to become the platform of choice for hosting over 900 conference and workshop editions in SIGPLAN and SIGSOFT, among other areas of computer science research.

Cite as

Danny M. Groenewegen, Elmer van Chastelet, Max M. de Krieger, Daniel A. A. Pelsmaeker, and Craig Anslow. Conf Researchr: A Domain-Specific Content Management System for Managing Large Conference Websites. In Eelco Visser Commemorative Symposium (EVCS 2023). Open Access Series in Informatics (OASIcs), Volume 109, pp. 12:1-12:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{groenewegen_et_al:OASIcs.EVCS.2023.12,
  author =	{Groenewegen, Danny M. and van Chastelet, Elmer and de Krieger, Max M. and Pelsmaeker, Daniel A. A. and Anslow, Craig},
  title =	{{Conf Researchr: A Domain-Specific Content Management System for Managing Large Conference Websites}},
  booktitle =	{Eelco Visser Commemorative Symposium (EVCS 2023)},
  pages =	{12:1--12:6},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-267-9},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{109},
  editor =	{L\"{a}mmel, Ralf and Mosses, Peter D. and Steimann, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.EVCS.2023.12},
  URN =		{urn:nbn:de:0030-drops-177823},
  doi =		{10.4230/OASIcs.EVCS.2023.12},
  annote =	{Keywords: Conf Researchr, conferences, WebDSL, Eelco Visser}
}
Document
Eating Your Own Dog Food: WebDSL Case Studies to Improve Academic Workflows

Authors: Danny M. Groenewegen, Elmer van Chastelet, Max M. de Krieger, and Daniel A. A. Pelsmaeker

Published in: OASIcs, Volume 109, Eelco Visser Commemorative Symposium (EVCS 2023)


Abstract
SDF, Stratego and Spoofax provide a platform for development of domain-specific programming languages. On this platform, the WebDSL project started out as a case study in language engineering, and grew into a reliable tool for rapid prototyping and continuous development of web applications. Our team led by Eelco Visser develops and operates several web applications to support academic workflows. EvaTool governs the process of course quality control, importing questionnaire data, and providing lecturers and education directors with a platform to discuss and agree on improvements. WebLab is an online learning management system with a focus on programming education, with support for lab work and digital exams, used by over 40 courses. Conf Researchr is a domain-specific content management system for creating and hosting integrated websites for conferences with multiple co-located events, used by all ACM SIGPLAN and SIGSOFT conferences. MyStudyPlanning is an application for composition of individual study programs by students and verification of those programs by the exam board, used by multiple faculties at the Delft University of Technology. These tools served as practical case studies for applying the research, and ensure the continued development of the underlying platform.

Cite as

Danny M. Groenewegen, Elmer van Chastelet, Max M. de Krieger, and Daniel A. A. Pelsmaeker. Eating Your Own Dog Food: WebDSL Case Studies to Improve Academic Workflows. In Eelco Visser Commemorative Symposium (EVCS 2023). Open Access Series in Informatics (OASIcs), Volume 109, pp. 13:1-13:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{groenewegen_et_al:OASIcs.EVCS.2023.13,
  author =	{Groenewegen, Danny M. and van Chastelet, Elmer and de Krieger, Max M. and Pelsmaeker, Daniel A. A.},
  title =	{{Eating Your Own Dog Food: WebDSL Case Studies to Improve Academic Workflows}},
  booktitle =	{Eelco Visser Commemorative Symposium (EVCS 2023)},
  pages =	{13:1--13:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-267-9},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{109},
  editor =	{L\"{a}mmel, Ralf and Mosses, Peter D. and Steimann, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.EVCS.2023.13},
  URN =		{urn:nbn:de:0030-drops-177838},
  doi =		{10.4230/OASIcs.EVCS.2023.13},
  annote =	{Keywords: WebDSL, WebLab, Spoofax, Eelco Visser, education}
}
Document
Partial and Simultaneous Transitive Orientations via Modular Decompositions

Authors: Miriam Münch, Ignaz Rutter, and Peter Stumpf

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
A natural generalization of the recognition problem for a geometric graph class is the problem of extending a representation of a subgraph to a representation of the whole graph. A related problem is to find representations for multiple input graphs that coincide on subgraphs shared by the input graphs. A common restriction is the sunflower case where the shared graph is the same for each pair of input graphs. These problems translate to the setting of comparability graphs where the representations correspond to transitive orientations of their edges. We use modular decompositions to improve the runtime for the orientation extension problem and the sunflower orientation problem to linear time. We apply these results to improve the runtime for the partial representation problem and the sunflower case of the simultaneous representation problem for permutation graphs to linear time. We also give the first efficient algorithms for these problems on circular permutation graphs.

Cite as

Miriam Münch, Ignaz Rutter, and Peter Stumpf. Partial and Simultaneous Transitive Orientations via Modular Decompositions. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 51:1-51:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{munch_et_al:LIPIcs.ISAAC.2022.51,
  author =	{M\"{u}nch, Miriam and Rutter, Ignaz and Stumpf, Peter},
  title =	{{Partial and Simultaneous Transitive Orientations via Modular Decompositions}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{51:1--51:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.51},
  URN =		{urn:nbn:de:0030-drops-173369},
  doi =		{10.4230/LIPIcs.ISAAC.2022.51},
  annote =	{Keywords: representation extension, simultaneous representation, comparability graph, permutation graph, circular permutation graph, modular decomposition}
}
Document
RANDOM
A Sublinear Local Access Implementation for the Chinese Restaurant Process

Authors: Peter Mörters, Christian Sohler, and Stefan Walzer

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
The Chinese restaurant process is a stochastic process closely related to the Dirichlet process that groups sequentially arriving objects into a variable number of classes, such that within each class objects are cyclically ordered. A popular description involves a restaurant, where customers arrive one by one and either sit down next to a randomly chosen customer at one of the existing tables or open a new table. The full state of the process after n steps is given by a permutation of the n objects and cannot be represented in sublinear space. In particular, if we only need specific information about a few objects or classes it would be preferable to obtain the answers without simulating the process completely. A recent line of research [Oded Goldreich et al., 2010; Moni Naor and Asaf Nussboim, 2007; Amartya Shankha Biswas et al., 2020; Guy Even et al., 2021] attempts to provide access to huge random objects without fully instantiating them. Such local access implementations provide answers to a sequence of queries about the random object, following the same distribution as if the object was fully generated. In this paper, we provide a local access implementation for a generalization of the Chinese restaurant process described above. Our implementation can be used to answer any sequence of adaptive queries about class affiliation of objects, number and sizes of classes at any time, position of elements within a class, or founding time of a class. The running time per query is polylogarithmic in the total size of the object, with high probability. Our approach relies on some ideas from the recent local access implementation for preferential attachment trees by Even et al. [Guy Even et al., 2021]. Such trees are related to the Chinese restaurant process in the sense that both involve a "rich-get-richer" phenomenon. A novel ingredient in our implementation is to embed the process in continuous time, in which the evolution of the different classes becomes stochastically independent [Joyce and Tavaré, 1987]. This independence is used to keep the probabilistic structure manageable even if many queries have already been answered. As similar embeddings are available for a wide range of urn processes [Krishna B. Athreya and Samuel Karlin, 1968], we believe that our approach may be applicable more generally. Moreover, local access implementations for birth and death processes that we encounter along the way may be of independent interest.

Cite as

Peter Mörters, Christian Sohler, and Stefan Walzer. A Sublinear Local Access Implementation for the Chinese Restaurant Process. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 28:1-28:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{morters_et_al:LIPIcs.APPROX/RANDOM.2022.28,
  author =	{M\"{o}rters, Peter and Sohler, Christian and Walzer, Stefan},
  title =	{{A Sublinear Local Access Implementation for the Chinese Restaurant Process}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{28:1--28:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.28},
  URN =		{urn:nbn:de:0030-drops-171500},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.28},
  annote =	{Keywords: Chinese restaurant process, Dirichlet process, sublinear time algorithm, random recursive tree, random permutation, random partition, Ewens distribution, simulation, local access implementation, continuous time embedding}
}
  • Refine by Author
  • 8 Müller, Peter
  • 7 Becker, Jürgen
  • 6 Athanas, Peter M.
  • 6 Teich, Jürgen
  • 5 Müller, Heinrich
  • Show More...

  • Refine by Classification
  • 12 Theory of computation → Design and analysis of algorithms
  • 7 Mathematics of computing → Graph algorithms
  • 7 Theory of computation → Parameterized complexity and exact algorithms
  • 5 Theory of computation → Graph algorithms analysis
  • 3 Theory of computation → Data structures design and analysis
  • Show More...

  • Refine by Keyword
  • 4 FPGA
  • 4 Simulation
  • 4 self-organization
  • 3 Auctions
  • 3 Combinatorial Auctions
  • Show More...

  • Refine by Type
  • 214 document

  • Refine by Publication Year
  • 38 2006
  • 37 2017
  • 21 2019
  • 20 2020
  • 19 2007
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail