37 Search Results for "M�ller, Julian-Steffen"


Volume

Dagstuhl Follow-Ups, Volume 6

Artificial and Computational Intelligence in Games

Editors: Simon M. Lucas, Michael Mateas, Mike Preuss, Pieter Spronck, and Julian Togelius

Document
Nonnegativity Problems for Matrix Semigroups

Authors: Julian D'Costa, Joël Ouaknine, and James Worrell

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The matrix semigroup membership problem asks, given square matrices M,M₁,…,M_k of the same dimension, whether M lies in the semigroup generated by M₁,…,M_k. It is classical that this problem is undecidable in general, but decidable in case M₁,…,M_k commute. In this paper we consider the problem of whether, given M₁,…,M_k, the semigroup generated by M₁,…,M_k contains a non-negative matrix. We show that in case M₁,…,M_k commute, this problem is decidable subject to Schanuel’s Conjecture. We show also that the problem is undecidable if the commutativity assumption is dropped. A key lemma in our decidability proof is a procedure to determine, given a matrix M, whether the sequence of matrices (Mⁿ)_{n = 0}^∞ is ultimately nonnegative. This answers a problem posed by S. Akshay [S. Akshay et al., 2022]. The latter result is in stark contrast to the notorious fact that it is not known how to determine, for any specific matrix index (i,j), whether the sequence (Mⁿ)_{i,j} is ultimately nonnegative. Indeed the latter is equivalent to the Ultimate Positivity Problem for linear recurrence sequences, a longstanding open problem.

Cite as

Julian D'Costa, Joël Ouaknine, and James Worrell. Nonnegativity Problems for Matrix Semigroups. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 27:1-27:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dcosta_et_al:LIPIcs.STACS.2024.27,
  author =	{D'Costa, Julian and Ouaknine, Jo\"{e}l and Worrell, James},
  title =	{{Nonnegativity Problems for Matrix Semigroups}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{27:1--27:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.27},
  URN =		{urn:nbn:de:0030-drops-197371},
  doi =		{10.4230/LIPIcs.STACS.2024.27},
  annote =	{Keywords: Decidability, Linear Recurrence Sequences, Schanuel’s Conjecture}
}
Document
Passenger-Aware Real-Time Planning of Short Turns to Reduce Delays in Public Transport

Authors: Julian Patzner, Ralf Rückert, and Matthias Müller-Hannemann

Published in: OASIcs, Volume 106, 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022)


Abstract
Delays and disruptions are commonplace in public transportation. An important tool to limit the impact of severely delayed vehicles is the use of short turns, where a planned trip is shortened in order to be able to resume the following trip in the opposite direction as close to the schedule as possible. Short turns have different effects on passengers: some suffer additional delays and have to reschedule their route, while others can benefit from them. Dispatchers therefore need decision support in order to use short turns only if the overall delay of all affected passengers is positively influenced. In this paper, we study the planning of short turns based on passenger flows. We propose a simulation framework which can be used to decide upon single short turns in real time. An experimental study with a scientific model (LinTim) of an entire public transport system for the German city of Stuttgart including busses, trams, and local trains shows that we can solve these problems on average within few milliseconds. Based on features of the current delay scenario and the passenger flow we use machine learning to classify cases where short turns are beneficial. Depending on how many features are used, we reach a correct classification rate of more than 93% (full feature set) and 90% (partial feature set) using random forests. Since precise passenger flows are often not available in urban public transportation, our machine learning approach has the great advantage of working with significantly less detailed passenger information.

Cite as

Julian Patzner, Ralf Rückert, and Matthias Müller-Hannemann. Passenger-Aware Real-Time Planning of Short Turns to Reduce Delays in Public Transport. In 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022). Open Access Series in Informatics (OASIcs), Volume 106, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{patzner_et_al:OASIcs.ATMOS.2022.13,
  author =	{Patzner, Julian and R\"{u}ckert, Ralf and M\"{u}ller-Hannemann, Matthias},
  title =	{{Passenger-Aware Real-Time Planning of Short Turns to Reduce Delays in Public Transport}},
  booktitle =	{22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022)},
  pages =	{13:1--13:18},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-259-4},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{106},
  editor =	{D'Emidio, Mattia and Lindner, Niels},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2022.13},
  URN =		{urn:nbn:de:0030-drops-171171},
  doi =		{10.4230/OASIcs.ATMOS.2022.13},
  annote =	{Keywords: Public Transportation, Delays, Real-time Dispatching, Passenger Flows}
}
Document
APPROX
Upper and Lower Bounds for Complete Linkage in General Metric Spaces

Authors: Anna Arutyunova, Anna Großwendt, Heiko Röglin, Melanie Schmidt, and Julian Wargalla

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
In a hierarchical clustering problem the task is to compute a series of mutually compatible clusterings of a finite metric space (P,dist). Starting with the clustering where every point forms its own cluster, one iteratively merges two clusters until only one cluster remains. Complete linkage is a well-known and popular algorithm to compute such clusterings: in every step it merges the two clusters whose union has the smallest radius (or diameter) among all currently possible merges. We prove that the radius (or diameter) of every k-clustering computed by complete linkage is at most by factor O(k) (or O(k²)) worse than an optimal k-clustering minimizing the radius (or diameter). Furthermore we give a negative answer to the question proposed by Dasgupta and Long [Sanjoy Dasgupta and Philip M. Long, 2005], who show a lower bound of Ω(log(k)) and ask if the approximation guarantee is in fact Θ(log(k)). We present instances where complete linkage performs poorly in the sense that the k-clustering computed by complete linkage is off by a factor of Ω(k) from an optimal solution for radius and diameter. We conclude that in general metric spaces complete linkage does not perform asymptotically better than single linkage, merging the two clusters with smallest inter-cluster distance, for which we prove an approximation guarantee of O(k).

Cite as

Anna Arutyunova, Anna Großwendt, Heiko Röglin, Melanie Schmidt, and Julian Wargalla. Upper and Lower Bounds for Complete Linkage in General Metric Spaces. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 18:1-18:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{arutyunova_et_al:LIPIcs.APPROX/RANDOM.2021.18,
  author =	{Arutyunova, Anna and Gro{\ss}wendt, Anna and R\"{o}glin, Heiko and Schmidt, Melanie and Wargalla, Julian},
  title =	{{Upper and Lower Bounds for Complete Linkage in General Metric Spaces}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{18:1--18:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.18},
  URN =		{urn:nbn:de:0030-drops-147115},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.18},
  annote =	{Keywords: Hierarchical Clustering, Complete Linkage, agglomerative Clustering, k-Center}
}
Document
A Parallel Batch-Dynamic Data Structure for the Closest Pair Problem

Authors: Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We propose a theoretically-efficient and practical parallel batch-dynamic data structure for the closest pair problem. Our solution is based on a serial dynamic closest pair data structure by Golin et al., and supports batches of insertions and deletions in parallel. For a data set of size n, our data structure supports a batch of insertions or deletions of size m in O(m(1+log ((n+m)/m))) expected work and O(log (n+m)log^*(n+m)) depth with high probability, and takes linear space. The key techniques for achieving these bounds are a new work-efficient parallel batch-dynamic binary heap, and careful management of the computation across sets of points to minimize work and depth. We provide an optimized multicore implementation of our data structure using dynamic hash tables, parallel heaps, and dynamic k-d trees. Our experiments on a variety of synthetic and real-world data sets show that it achieves a parallel speedup of up to 38.57x (15.10x on average) on 48 cores with hyper-threading. In addition, we also implement and compare four parallel algorithms for static closest pair problem, for which we are not aware of any existing practical implementations. On 48 cores with hyper-threading, the static algorithms achieve up to 51.45x (29.42x on average) speedup, and Rabin’s algorithm performs the best on average. Comparing our dynamic algorithm to the fastest static algorithm, we find that it is advantageous to use the dynamic algorithm for batch sizes of up to 20% of the data set. As far as we know, our work is the first to experimentally evaluate parallel closest pair algorithms, in both the static and the dynamic settings.

Cite as

Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. A Parallel Batch-Dynamic Data Structure for the Closest Pair Problem. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 60:1-60:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{wang_et_al:LIPIcs.SoCG.2021.60,
  author =	{Wang, Yiqiu and Yu, Shangdi and Gu, Yan and Shun, Julian},
  title =	{{A Parallel Batch-Dynamic Data Structure for the Closest Pair Problem}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{60:1--60:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.60},
  URN =		{urn:nbn:de:0030-drops-138594},
  doi =		{10.4230/LIPIcs.SoCG.2021.60},
  annote =	{Keywords: Closest Pair, Parallel Algorithms, Dynamic Algorithms, Experimental Algorithms}
}
Document
Towards a Reliable and Context-Based System Architecture for Autonomous Vehicles

Authors: Tobias Kain, Philipp Mundhenk, Julian-Steffen Müller, Hans Tompits, Maximilian Wesche, and Hendrik Decke

Published in: OASIcs, Volume 79, 2nd International Workshop on Autonomous Systems Design (ASD 2020)


Abstract
Full vehicle autonomy excludes a takeover by passengers in case a safety-critical application fails. Therefore, the system responsible for operating the autonomous vehicle has to detect and handle failures autonomously. Moreover, this system has to ensure the safety of the passengers, as well as the safety of other road users at any given time. Especially in the initial phase of autonomous vehicles, building up consumer confidence is essential. Therefore, in this regard, handling all failures by simply performing an emergency stop is not desirable. In this paper, we introduce an approach enabling a dynamic and safe reconfiguration of the autonomous driving system to handle occurring hardware and software failures. Since the requirements concerning safe reconfiguration actions are significantly affected by the current context the car is experiencing, the developed reconfiguration approach is sensitive to context changes. Our approach defines three interconnected layers, which are distinguished by their level of awareness. The top layer, referred to as the context layer, is responsible for observing the context. These context observations, in turn, imply a set of requirements, which constitute the input for the reconfiguration layer. The latter layer is required to determine reconfiguration actions, which are then executed by the architecture layer.

Cite as

Tobias Kain, Philipp Mundhenk, Julian-Steffen Müller, Hans Tompits, Maximilian Wesche, and Hendrik Decke. Towards a Reliable and Context-Based System Architecture for Autonomous Vehicles. In 2nd International Workshop on Autonomous Systems Design (ASD 2020). Open Access Series in Informatics (OASIcs), Volume 79, pp. 1:1-1:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kain_et_al:OASIcs.ASD.2020.1,
  author =	{Kain, Tobias and Mundhenk, Philipp and M\"{u}ller, Julian-Steffen and Tompits, Hans and Wesche, Maximilian and Decke, Hendrik},
  title =	{{Towards a Reliable and Context-Based System Architecture for Autonomous Vehicles}},
  booktitle =	{2nd International Workshop on Autonomous Systems Design (ASD 2020)},
  pages =	{1:1--1:7},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-141-2},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{79},
  editor =	{Steinhorst, Sebastian and Deshmukh, Jyotirmoy V.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ASD.2020.1},
  URN =		{urn:nbn:de:0030-drops-125956},
  doi =		{10.4230/OASIcs.ASD.2020.1},
  annote =	{Keywords: autonomous driving, fail-operational systems, context-based architecture, application placement, optimization, monitoring}
}
Document
System Description
WANDA - a Higher Order Termination Tool (System Description)

Authors: Cynthia Kop

Published in: LIPIcs, Volume 167, 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)


Abstract
Wanda is a fully automatic termination analysis tool for higher-order term rewriting. In this paper, we will discuss the methodology used in Wanda. Most pertinently, this includes a higher-order dependency pair framework and a variation of the higher-order recursive path ordering, as well as some non-termination analysis techniques and delegation to a first-order tool. Additionally, we will discuss Wanda’s internal rewriting formalism, and how to use Wanda in practice for systems in two different formalisms. We also present experimental results that consider both formalisms.

Cite as

Cynthia Kop. WANDA - a Higher Order Termination Tool (System Description). In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 167, pp. 36:1-36:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kop:LIPIcs.FSCD.2020.36,
  author =	{Kop, Cynthia},
  title =	{{WANDA - a Higher Order Termination Tool}},
  booktitle =	{5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)},
  pages =	{36:1--36:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-155-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{167},
  editor =	{Ariola, Zena M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2020.36},
  URN =		{urn:nbn:de:0030-drops-123587},
  doi =		{10.4230/LIPIcs.FSCD.2020.36},
  annote =	{Keywords: higher-order term rewriting, termination, automatic analysis, dependency pair framework, higher-order recursive path ordering}
}
Document
Tool Insights Paper
MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors (Tool Insights Paper)

Authors: Linghui Luo, Julian Dolby, and Eric Bodden

Published in: LIPIcs, Volume 134, 33rd European Conference on Object-Oriented Programming (ECOOP 2019)


Abstract
In the past, many static analyses have been created in academia, but only a few of them have found widespread use in industry. Those analyses which are adopted by developers usually have IDE support in the form of plugins, without which developers have no convenient mechanism to use the analysis. Hence, the key to making static analyses more accessible to developers is to integrate the analyses into IDEs and editors. However, integrating static analyses into IDEs is non-trivial: different IDEs have different UI workflows and APIs, expertise in those matters is required to write such plugins, and analysis experts are not typically familiar with doing this. As a result, especially in academia, most analysis tools are headless and only have command-line interfaces. To make static analyses more usable, we propose MagpieBridge - a general approach to integrating static analyses into IDEs and editors. MagpieBridge reduces the mxn complexity problem of integrating m analyses into n IDEs to m+n complexity because each analysis and type of plugin need be done just once for MagpieBridge itself. We demonstrate our approach by integrating two existing analyses, Ariadne and CogniCrypt, into IDEs; these two analyses illustrate the generality of MagpieBridge, as they are based on different program analysis frameworks - WALA and Soot respectively - for different application areas - machine learning and security - and different programming languages - Python and Java. We show further generality of MagpieBridge by using multiple popular IDEs and editors, such as Eclipse, IntelliJ, PyCharm, Jupyter, Sublime Text and even Emacs and Vim.

Cite as

Linghui Luo, Julian Dolby, and Eric Bodden. MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors (Tool Insights Paper). In 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 134, pp. 21:1-21:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{luo_et_al:LIPIcs.ECOOP.2019.21,
  author =	{Luo, Linghui and Dolby, Julian and Bodden, Eric},
  title =	{{MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors}},
  booktitle =	{33rd European Conference on Object-Oriented Programming (ECOOP 2019)},
  pages =	{21:1--21:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-111-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{134},
  editor =	{Donaldson, Alastair F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2019.21},
  URN =		{urn:nbn:de:0030-drops-108139},
  doi =		{10.4230/LIPIcs.ECOOP.2019.21},
  annote =	{Keywords: IDE, Tool Support, Static Analysis, Language Server Protocol}
}
Document
Precedence-Constrained Min Sum Set Cover

Authors: Jessica McClintock, Julián Mestre, and Anthony Wirth

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
We introduce a version of the Min Sum Set Cover (MSSC) problem in which there are "AND" precedence constraints on the m sets. In the Precedence-Constrained Min Sum Set Cover (PCMSSC) problem, when interpreted as directed edges, the constraints induce an acyclic directed graph. PCMSSC models the aim of scheduling software tests to prioritize the rate of fault detection subject to dependencies between tests. Our greedy scheme for PCMSSC is similar to the approaches of Feige, Lovasz, and, Tetali for MSSC, and Chekuri and Motwani for precedence-constrained scheduling to minimize weighted completion time. With a factor-4 increase in approximation ratio, we reduce PCMSSC to the problem of finding a maximum-density precedence-closed sub-family of sets, where density is the ratio of sub-family union size to cardinality. We provide a greedy factor-sqrt m algorithm for maximizing density; on forests of in-trees, we show this algorithm finds an optimal solution. Harnessing an alternative greedy argument of Chekuri and Kumar for Maximum Coverage with Group Budget Constraints, on forests of out-trees, we design an algorithm with approximation ratio equal to maximum tree height. Finally, with a reduction from the Planted Dense Subgraph detection problem, we show that its conjectured hardness implies there is no polynomial-time algorithm for PCMSSC with approximation factor in O(m^{1/12-epsilon}).

Cite as

Jessica McClintock, Julián Mestre, and Anthony Wirth. Precedence-Constrained Min Sum Set Cover. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 55:1-55:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{mcclintock_et_al:LIPIcs.ISAAC.2017.55,
  author =	{McClintock, Jessica and Mestre, Juli\'{a}n and Wirth, Anthony},
  title =	{{Precedence-Constrained Min Sum Set Cover}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{55:1--55:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.55},
  URN =		{urn:nbn:de:0030-drops-82648},
  doi =		{10.4230/LIPIcs.ISAAC.2017.55},
  annote =	{Keywords: planted dense subgraph, min sum set cover, precedence constrained}
}
Document
Yanagi: Transcript Segment Library Construction for RNA-Seq Quantification

Authors: Mohamed K. Gunady, Steffen Cornwell, Stephen M. Mount, and Héctor Corrada Bravo

Published in: LIPIcs, Volume 88, 17th International Workshop on Algorithms in Bioinformatics (WABI 2017)


Abstract
Analysis of differential alternative splicing from RNA-seq data is complicated by the fact that many RNA-seq reads map to multiple transcripts, and that annotated transcripts from a given gene are often a small subset of many possible complete transcripts for that gene. Here we describe Yanagi, a tool which segments a transcriptome into disjoint regions to create a segments library from a complete transcriptome annotation that preserves all of its consecutive regions of a given length L while distinguishing annotated alternative splicing events in the transcriptome. In this paper, we formalize this concept of transcriptome segmentation and propose an efficient algorithm for generating segment libraries based on a length parameter dependent on specific RNA-Seq library construction. The resulting segment sequences can be used with pseudo-alignment tools to quantify expression at the segment level. We characterize the segment libraries for the reference transcriptomes of Drosophila melanogaster and Homo sapiens. Finally, we demonstrate the utility of quantification using a segment library based on an analysis of differential exon skipping in Drosophila melanogaster and Homo sapiens. The notion of transcript segmentation as introduced here and implemented in Yanagi will open the door for the application of lightweight, ultra-fast pseudo-alignment algorithms in a wide variety of analyses of transcription variation.

Cite as

Mohamed K. Gunady, Steffen Cornwell, Stephen M. Mount, and Héctor Corrada Bravo. Yanagi: Transcript Segment Library Construction for RNA-Seq Quantification. In 17th International Workshop on Algorithms in Bioinformatics (WABI 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 88, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{gunady_et_al:LIPIcs.WABI.2017.10,
  author =	{Gunady, Mohamed K. and Cornwell, Steffen and Mount, Stephen M. and Bravo, H\'{e}ctor Corrada},
  title =	{{Yanagi: Transcript Segment Library Construction for RNA-Seq Quantification}},
  booktitle =	{17th International Workshop on Algorithms in Bioinformatics (WABI 2017)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-050-7},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{88},
  editor =	{Schwartz, Russell and Reinert, Knut},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2017.10},
  URN =		{urn:nbn:de:0030-drops-76487},
  doi =		{10.4230/LIPIcs.WABI.2017.10},
  annote =	{Keywords: RNA-Seq, Genome Sequencing, Kmer-based alignment, Transcriptome Quantification, Differential Alternative Splicing}
}
Document
The Quantile Index - Succinct Self-Index for Top-k Document Retrieval

Authors: Niklas Baumstark, Simon Gog, Tobias Heuer, and Julian Labeit

Published in: LIPIcs, Volume 75, 16th International Symposium on Experimental Algorithms (SEA 2017)


Abstract
One of the central problems in information retrieval is that of finding the k documents in a large text collection that best match a query given by a user. A recent result of Navarro & Nekrich (SODA 2012) showed that single term and phrase queries of length m can be solved in optimal O(m+k) time using a linear word sized index. While a verbatim implementation of the index would be at least an order of magnitude larger than the original collection, various authors incrementally improved the index to a point where the space requirement is currently within a factor of 1.5 to 2.0 of the text size for standard collections. In this paper, we propose a new time/space trade-off for different top-k indexes. This is achieved by sampling only a quantile of the postings in the original inverted file or suffix array-based index. For those queries that cannot be answered using the sampled version of the index we show how to compute the query results on the fly efficiently. As an example, we apply our method to the top-k framework by Navarro & Nekrich. Under probabilistic assumptions that hold for most standard texts, and for a standard scoring function called term frequency, our index can be represented with only sublinearly many bits plus the space needed for a compressed suffix array of the text, while maintaining poly-logarithmic query times. We evaluate our solution on real-world datasets and compare its practical space usage and performance against state-of-the-art implementations. Our experiments show that our index compresses below the size of the original text. To our knowledge it is the first suffix array-based text index that is able to break this bound in practice even for non-repetitive collections, while still maintaining reasonable query times of under half a millisecond on average for top-10 queries.

Cite as

Niklas Baumstark, Simon Gog, Tobias Heuer, and Julian Labeit. The Quantile Index - Succinct Self-Index for Top-k Document Retrieval. In 16th International Symposium on Experimental Algorithms (SEA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 75, pp. 15:1-15:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{baumstark_et_al:LIPIcs.SEA.2017.15,
  author =	{Baumstark, Niklas and Gog, Simon and Heuer, Tobias and Labeit, Julian},
  title =	{{The Quantile Index - Succinct Self-Index for Top-k Document Retrieval}},
  booktitle =	{16th International Symposium on Experimental Algorithms (SEA 2017)},
  pages =	{15:1--15:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-036-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{75},
  editor =	{Iliopoulos, Costas S. and Pissis, Solon P. and Puglisi, Simon J. and Raman, Rajeev},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2017.15},
  URN =		{urn:nbn:de:0030-drops-76183},
  doi =		{10.4230/LIPIcs.SEA.2017.15},
  annote =	{Keywords: Text Indexing, Succinct Data Structures, Top-k Document Retrieval}
}
Document
Synergies among Testing, Verification, and Repair for Concurrent Programs (Dagstuhl Seminar 16201)

Authors: Julian Dolby, Orna Grumberg, Peter Müller, and Omer Tripp

Published in: Dagstuhl Reports, Volume 6, Issue 5 (2016)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 16201 "Synergies among Testing, Verification, and Repair for Concurrent Programs". This seminar builds upon, and is inspired by, several past seminars on program testing, verification, repair and combinations thereof. These include Dagstuhl Seminar 13021 "Symbolic Methods in Testing"; Dagstuhl Seminar 13061 "Fault Prediction, Localization and Repair"; Dagstuhl Seminar 14171 "Evaluating Software Verification Systems: Benchmarks and Competitions"; Dagstuhl Seminar 14352 "Next Generation Static Software Analysis Tools"; Dagstuhl Seminar 14442 "Symbolic Execution and Constraint Solving"; and Dagstuhl Seminar 15191 "Compositional Verification Methods for Next-Generation Concurrency". These were held in January 2013; February 2013; April 2014; August 2014; October 2014; and May 2015, respectively. Two notable contributions of Dagstuhl Seminar 16201, which distinguish it from these past seminars, are (i) the focus on concurrent programming, which introduces significant challenges to testing, verification and repair tools, as well as (ii) the goal of identifying and exploiting synergies between the testing, verification and repair research communities in light of common needs and goals.

Cite as

Julian Dolby, Orna Grumberg, Peter Müller, and Omer Tripp. Synergies among Testing, Verification, and Repair for Concurrent Programs (Dagstuhl Seminar 16201). In Dagstuhl Reports, Volume 6, Issue 5, pp. 56-71, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Article{dolby_et_al:DagRep.6.5.56,
  author =	{Dolby, Julian and Grumberg, Orna and M\"{u}ller, Peter and Tripp, Omer},
  title =	{{Synergies among Testing, Verification, and Repair for Concurrent Programs (Dagstuhl Seminar 16201)}},
  pages =	{56--71},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2016},
  volume =	{6},
  number =	{5},
  editor =	{Dolby, Julian and Grumberg, Orna and M\"{u}ller, Peter and Tripp, Omer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.6.5.56},
  URN =		{urn:nbn:de:0030-drops-67203},
  doi =		{10.4230/DagRep.6.5.56},
  annote =	{Keywords: (automatic) bug repair, concurrency bugs, concurrent programming, deductive verification, interactive verification, linearizability, synchronization testing}
}
Document
Efficient Algorithms with Asymmetric Read and Write Costs

Authors: Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
In several emerging technologies for computer memory (main memory), the cost of reading is significantly cheaper than the cost of writing. Such asymmetry in memory costs poses a fundamentally different model from the RAM for algorithm design. In this paper we study lower and upper bounds for various problems under such asymmetric read and write costs. We consider both the case in which all but O(1) memory has asymmetric cost, and the case of a small cache of symmetric memory. We model both cases using the (M,omega)-ARAM, in which there is a small (symmetric) memory of size M and a large unbounded (asymmetric) memory, both random access, and where reading from the large memory has unit cost, but writing has cost omega >> 1. For FFT and sorting networks we show a lower bound cost of Omega(omega*n*log_{omega*M}(n)), which indicates that it is not possible to achieve asymptotic improvements with cheaper reads when omega is bounded by a polynomial in M. Moreover, there is an asymptotic gap (of min(omega,log(n)/log(omega*M)) between the cost of sorting networks and comparison sorting in the model. This contrasts with the RAM, and most other models, in which the asymptotic costs are the same. We also show a lower bound for computations on an n*n diamond DAG of Omega(omega*n^2/M) cost, which indicates no asymptotic improvement is achievable with fast reads. However, we show that for the minimum edit distance problem (and related problems), which would seem to be a diamond DAG, we can beat this lower bound with an algorithm with only O(omega*n^2/(M*min(omega^{1/3},M^{1/2}))) cost. To achieve this we make use of a "path sketch" technique that is forbidden in a strict DAG computation. Finally, we show several interesting upper bounds for shortest path problems, minimum spanning trees, and other problems. A common theme in many of the upper bounds is that they require redundant computation and a tradeoff between reads and writes.

Cite as

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. Efficient Algorithms with Asymmetric Read and Write Costs. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 14:1-14:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{blelloch_et_al:LIPIcs.ESA.2016.14,
  author =	{Blelloch, Guy E. and Fineman, Jeremy T. and Gibbons, Phillip B. and Gu, Yan and Shun, Julian},
  title =	{{Efficient Algorithms with Asymmetric Read and Write Costs}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{14:1--14:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.14},
  URN =		{urn:nbn:de:0030-drops-63656},
  doi =		{10.4230/LIPIcs.ESA.2016.14},
  annote =	{Keywords: Computational Model, Lower Bounds, Shortest-paths, Non-Volatile Memory, Sorting Networks, Fast Fourier Transform, Diamond DAG, Minimum Spanning Tree}
}
Document
A Van Benthem Theorem for Modal Team Semantics

Authors: Juha Kontinen, Julian-Steffen Müller, Henning Schnoor, and Heribert Vollmer

Published in: LIPIcs, Volume 41, 24th EACSL Annual Conference on Computer Science Logic (CSL 2015)


Abstract
The famous van Benthem theorem states that modal logic corresponds exactly to the fragment of first-order logic that is invariant under bisimulation. In this article we prove an exact analogue of this theorem in the framework of modal dependence logic (MDL) and team semantics. We show that Modal Team Logic (MTL) extending MDL by classical negation captures exactly the FO-definable bisimulation invariant properties of Kripke structures and teams. We also compare the expressive power of MTL to most of the variants and extensions of MDL recently studied in the area.

Cite as

Juha Kontinen, Julian-Steffen Müller, Henning Schnoor, and Heribert Vollmer. A Van Benthem Theorem for Modal Team Semantics. In 24th EACSL Annual Conference on Computer Science Logic (CSL 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 41, pp. 277-291, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{kontinen_et_al:LIPIcs.CSL.2015.277,
  author =	{Kontinen, Juha and M\"{u}ller, Julian-Steffen and Schnoor, Henning and Vollmer, Heribert},
  title =	{{A Van Benthem Theorem for Modal Team Semantics}},
  booktitle =	{24th EACSL Annual Conference on Computer Science Logic (CSL 2015)},
  pages =	{277--291},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-90-3},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{41},
  editor =	{Kreutzer, Stephan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2015.277},
  URN =		{urn:nbn:de:0030-drops-54206},
  doi =		{10.4230/LIPIcs.CSL.2015.277},
  annote =	{Keywords: modal logic, dependence logic, team semantics, expressivity, bisimulation, independence, inclusion, generalized dependence atom}
}
Document
Artificial and Computational Intelligence in Games: Integration (Dagstuhl Seminar 15051)

Authors: Simon M. Lucas, Michael Mateas, Mike Preuss, Pieter Spronck, and Julian Togelius

Published in: Dagstuhl Reports, Volume 5, Issue 1 (2015)


Abstract
This report documents Dagstuhl Seminar 15051 "Artificial and Computational Intelligence in Games: Integration". The focus of the seminar was on the computational techniques used to create, enhance, and improve the experiences of humans interacting with and within virtual environments. Different researchers in this field have different goals, including developing and testing new AI methods, creating interesting and believable non-player characters, improving the game production pipeline, studying game design through computational means, and understanding players and patterns of interaction. In recent years it has become increasingly clear that many of the research goals in the field require a multidisciplinary approach, or at least a combination of techniques that, in the past, were considered separate research topics. The goal of the seminar was to explicitly take the first steps along this path of integration, and investigate which topics and techniques would benefit most from collaboration, how collaboration could be shaped, and which new research questions may potentially be answered.

Cite as

Simon M. Lucas, Michael Mateas, Mike Preuss, Pieter Spronck, and Julian Togelius. Artificial and Computational Intelligence in Games: Integration (Dagstuhl Seminar 15051). In Dagstuhl Reports, Volume 5, Issue 1, pp. 207-242, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@Article{lucas_et_al:DagRep.5.1.207,
  author =	{Lucas, Simon M. and Mateas, Michael and Preuss, Mike and Spronck, Pieter and Togelius, Julian},
  title =	{{Artificial and Computational Intelligence in Games: Integration (Dagstuhl Seminar 15051)}},
  pages =	{207--242},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2015},
  volume =	{5},
  number =	{1},
  editor =	{Lucas, Simon M. and Mateas, Michael and Preuss, Mike and Spronck, Pieter and Togelius, Julian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.5.1.207},
  URN =		{urn:nbn:de:0030-drops-50404},
  doi =		{10.4230/DagRep.5.1.207},
  annote =	{Keywords: Multi-agent systems, Dynamical systems, Entertainment modeling, Player satisfaction, Game design, Serious games, Game theory}
}
  • Refine by Author
  • 6 Lucas, Simon M.
  • 6 Togelius, Julian
  • 5 Mateas, Michael
  • 5 Preuss, Mike
  • 5 Spronck, Pieter
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Transportation
  • 1 Computer systems organization → Reconfigurable computing
  • 1 Computing methodologies → Shared memory algorithms
  • 1 Computing methodologies → Symbolic and algebraic manipulation
  • 1 Software and its engineering → Software notations and tools
  • Show More...

  • Refine by Keyword
  • 3 artificial intelligence
  • 2 Computer Games
  • 2 Games
  • 2 Semantic Interoperability and Integration
  • 2 Video games
  • Show More...

  • Refine by Type
  • 36 document
  • 1 volume

  • Refine by Publication Year
  • 11 2013
  • 5 2005
  • 3 2014
  • 3 2017
  • 2 2015
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail