2 Search Results for "Muggli, Martin"


Document
A Succinct Solution to Rmap Alignment

Authors: Martin D. Muggli, Simon J. Puglisi, and Christina Boucher

Published in: LIPIcs, Volume 113, 18th International Workshop on Algorithms in Bioinformatics (WABI 2018)


Abstract
We present Kohdista, which is an index-based algorithm for finding pairwise alignments between single molecule maps (Rmaps). The novelty of our approach is the formulation of the alignment problem as automaton path matching, and the application of modern index-based data structures. In particular, we combine the use of the Generalized Compressed Suffix Array (GCSA) index with the wavelet tree in order to build Kohdista. We validate Kohdista on simulated E. coli data, showing the approach successfully finds alignments between Rmaps simulated from overlapping genomic regions. Lastly, we demonstrate Kohdista is the only method that is capable of finding a significant number of high quality pairwise Rmap alignments for large eukaryote organisms in reasonable time. Kohdista is available at https://github.com/mmuggli/KOHDISTA/.

Cite as

Martin D. Muggli, Simon J. Puglisi, and Christina Boucher. A Succinct Solution to Rmap Alignment. In 18th International Workshop on Algorithms in Bioinformatics (WABI 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 113, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{muggli_et_al:LIPIcs.WABI.2018.12,
  author =	{Muggli, Martin D. and Puglisi, Simon J. and Boucher, Christina},
  title =	{{A Succinct Solution to Rmap Alignment}},
  booktitle =	{18th International Workshop on Algorithms in Bioinformatics (WABI 2018)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-082-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{113},
  editor =	{Parida, Laxmi and Ukkonen, Esko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2018.12},
  URN =		{urn:nbn:de:0030-drops-93143},
  doi =		{10.4230/LIPIcs.WABI.2018.12},
  annote =	{Keywords: Optical mapping, index based data structures, FM-index, graph algorithms}
}
Document
Disentangled Long-Read De Bruijn Graphs via Optical Maps

Authors: Bahar Alipanahi, Leena Salmela, Simon J. Puglisi, Martin Muggli, and Christina Boucher

Published in: LIPIcs, Volume 88, 17th International Workshop on Algorithms in Bioinformatics (WABI 2017)


Abstract
While long reads produced by third-generation sequencing technology from, e.g, Pacific Biosciences have been shown to increase the quality of draft genomes in repetitive regions, fundamental computational challenges remain in overcoming their high error rate and assembling them efficiently. In this paper we show that the de Bruijn graph built on the long reads can be efficiently and substantially disentangled using optical mapping data as auxiliary information. Fundamental to our approach is the use of the positional de Bruijn graph and a succinct data structure for constructing and traversing this graph. Our experimental results show that over 97.7% of directed cycles have been removed from the resulting positional de Bruijn graph as compared to its non-positional counterpart. Our results thus indicate that disentangling the de Bruijn graph using positional information is a promising direction for developing a simple and efficient assembly algorithm for long reads.

Cite as

Bahar Alipanahi, Leena Salmela, Simon J. Puglisi, Martin Muggli, and Christina Boucher. Disentangled Long-Read De Bruijn Graphs via Optical Maps. In 17th International Workshop on Algorithms in Bioinformatics (WABI 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 88, pp. 1:1-1:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{alipanahi_et_al:LIPIcs.WABI.2017.1,
  author =	{Alipanahi, Bahar and Salmela, Leena and Puglisi, Simon J. and Muggli, Martin and Boucher, Christina},
  title =	{{Disentangled Long-Read De Bruijn Graphs via Optical Maps}},
  booktitle =	{17th International Workshop on Algorithms in Bioinformatics (WABI 2017)},
  pages =	{1:1--1:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-050-7},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{88},
  editor =	{Schwartz, Russell and Reinert, Knut},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2017.1},
  URN =		{urn:nbn:de:0030-drops-76614},
  doi =		{10.4230/LIPIcs.WABI.2017.1},
  annote =	{Keywords: Positional de Bruijn graph, Genome Assembly, Long Read Data, Optical maps}
}
  • Refine by Author
  • 2 Boucher, Christina
  • 2 Puglisi, Simon J.
  • 1 Alipanahi, Bahar
  • 1 Muggli, Martin
  • 1 Muggli, Martin D.
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Bioinformatics

  • Refine by Keyword
  • 1 FM-index
  • 1 Genome Assembly
  • 1 Long Read Data
  • 1 Optical mapping
  • 1 Optical maps
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2017
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail