80 Search Results for "N�chter, Andreas"


Document
Weighted HOM-Problem for Nonnegative Integers

Authors: Andreas Maletti, Andreea-Teodora Nász, and Erik Paul

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The HOM-problem asks whether the image of a regular tree language under a given tree homomorphism is again regular. It was recently shown to be decidable by Godoy, Giménez, Ramos, and Àlvarez. In this paper, the ℕ-weighted version of this problem is considered and its decidability is proved. More precisely, it is decidable in polynomial time whether the image of a regular ℕ-weighted tree language under a nondeleting, nonerasing tree homomorphism is regular.

Cite as

Andreas Maletti, Andreea-Teodora Nász, and Erik Paul. Weighted HOM-Problem for Nonnegative Integers. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 51:1-51:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{maletti_et_al:LIPIcs.STACS.2024.51,
  author =	{Maletti, Andreas and N\'{a}sz, Andreea-Teodora and Paul, Erik},
  title =	{{Weighted HOM-Problem for Nonnegative Integers}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{51:1--51:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.51},
  URN =		{urn:nbn:de:0030-drops-197614},
  doi =		{10.4230/LIPIcs.STACS.2024.51},
  annote =	{Keywords: Weighted Tree Automaton, Decision Problem, Subtree Equality Constraint, Tree Homomorphism, HOM-Problem, Weighted Tree Grammar, Weighted HOM-Problem}
}
Document
Exact and Approximation Algorithms for Routing a Convoy Through a Graph

Authors: Martijn van Ee, Tim Oosterwijk, René Sitters, and Andreas Wiese

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We study routing problems of a convoy in a graph, generalizing the shortest path problem (SPP), the travelling salesperson problem (TSP), and the Chinese postman problem (CPP) which are all well-studied in the classical (non-convoy) setting. We assume that each edge in the graph has a length and a speed at which it can be traversed and that our convoy has a given length. While the convoy moves through the graph, parts of it can be located on different edges. For safety requirements, at all time the whole convoy needs to travel at the same speed which is dictated by the slowest edge on which currently a part of the convoy is located. For Convoy-SPP, we give a strongly polynomial time exact algorithm. For Convoy-TSP, we provide an O(log n)-approximation algorithm and an O(1)-approximation algorithm for trees. Both results carry over to Convoy-CPP which - maybe surprisingly - we prove to be NP-hard in the convoy setting. This contrasts the non-convoy setting in which the problem is polynomial time solvable.

Cite as

Martijn van Ee, Tim Oosterwijk, René Sitters, and Andreas Wiese. Exact and Approximation Algorithms for Routing a Convoy Through a Graph. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 86:1-86:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{vanee_et_al:LIPIcs.MFCS.2023.86,
  author =	{van Ee, Martijn and Oosterwijk, Tim and Sitters, Ren\'{e} and Wiese, Andreas},
  title =	{{Exact and Approximation Algorithms for Routing a Convoy Through a Graph}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{86:1--86:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.86},
  URN =		{urn:nbn:de:0030-drops-186205},
  doi =		{10.4230/LIPIcs.MFCS.2023.86},
  annote =	{Keywords: approximation algorithms, convoy routing, shortest path problem, traveling salesperson problem}
}
Document
Online and Dynamic Algorithms for Geometric Set Cover and Hitting Set

Authors: Arindam Khan, Aditya Lonkar, Saladi Rahul, Aditya Subramanian, and Andreas Wiese

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
Set cover and hitting set are fundamental problems in combinatorial optimization which are well-studied in the offline, online, and dynamic settings. We study the geometric versions of these problems and present new online and dynamic algorithms for them. In the online version of set cover (resp. hitting set), m sets (resp. n points) are given and n points (resp. m sets) arrive online, one-by-one. In the dynamic versions, points (resp. sets) can arrive as well as depart. Our goal is to maintain a set cover (resp. hitting set), minimizing the size of the computed solution. For online set cover for (axis-parallel) squares of arbitrary sizes, we present a tight O(log n)-competitive algorithm. In the same setting for hitting set, we provide a tight O(log N)-competitive algorithm, assuming that all points have integral coordinates in [0,N)². No online algorithm had been known for either of these settings, not even for unit squares (apart from the known online algorithms for arbitrary set systems). For both dynamic set cover and hitting set with d-dimensional hyperrectangles, we obtain (log m)^O(d)-approximation algorithms with (log m)^O(d) worst-case update time. This partially answers an open question posed by Chan et al. [SODA'22]. Previously, no dynamic algorithms with polylogarithmic update time were known even in the setting of squares (for either of these problems). Our main technical contributions are an extended quad-tree approach and a frequency reduction technique that reduces geometric set cover instances to instances of general set cover with bounded frequency.

Cite as

Arindam Khan, Aditya Lonkar, Saladi Rahul, Aditya Subramanian, and Andreas Wiese. Online and Dynamic Algorithms for Geometric Set Cover and Hitting Set. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 46:1-46:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{khan_et_al:LIPIcs.SoCG.2023.46,
  author =	{Khan, Arindam and Lonkar, Aditya and Rahul, Saladi and Subramanian, Aditya and Wiese, Andreas},
  title =	{{Online and Dynamic Algorithms for Geometric Set Cover and Hitting Set}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{46:1--46:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.46},
  URN =		{urn:nbn:de:0030-drops-178967},
  doi =		{10.4230/LIPIcs.SoCG.2023.46},
  annote =	{Keywords: Geometric Set Cover, Hitting Set, Rectangles, Squares, Hyperrectangles, Online Algorithms, Dynamic Data Structures}
}
Document
On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension

Authors: Johannes Blum, Yann Disser, Andreas Emil Feldmann, Siddharth Gupta, and Anna Zych-Pawlewicz

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
We consider the Sparse Hitting Set (Sparse-HS) problem, where we are given a set system (V,ℱ,ℬ) with two families ℱ,ℬ of subsets of the universe V. The task is to find a hitting set for ℱ that minimizes the maximum number of elements in any of the sets of ℬ. This generalizes several problems that have been studied in the literature. Our focus is on determining the complexity of some of these special cases of Sparse-HS with respect to the sparseness k, which is the optimum number of hitting set elements in any set of ℬ (i.e., the value of the objective function). For the Sparse Vertex Cover (Sparse-VC) problem, the universe is given by the vertex set V of a graph, and ℱ is its edge set. We prove NP-hardness for sparseness k ≥ 2 and polynomial time solvability for k = 1. We also provide a polynomial-time 2-approximation algorithm for any k. A special case of Sparse-VC is Fair Vertex Cover (Fair-VC), where the family ℬ is given by vertex neighbourhoods. For this problem it was open whether it is FPT (or even XP) parameterized by the sparseness k. We answer this question in the negative, by proving NP-hardness for constant k. We also provide a polynomial-time (2-1/k)-approximation algorithm for Fair-VC, which is better than any approximation algorithm possible for Sparse-VC or the Vertex Cover problem (under the Unique Games Conjecture). We then switch to a different set of problems derived from Sparse-HS related to the highway dimension, which is a graph parameter modelling transportation networks. In recent years a growing literature has shown interesting algorithms for graphs of low highway dimension. To exploit the structure of such graphs, most of them compute solutions to the r-Shortest Path Cover (r-SPC) problem, where r > 0, ℱ contains all shortest paths of length between r and 2r, and ℬ contains all balls of radius 2r. It is known that there is an XP algorithm that computes solutions to r-SPC of sparseness at most h if the input graph has highway dimension h. However it was not known whether a corresponding FPT algorithm exists as well. We prove that r-SPC and also the related r-Highway Dimension (r-HD) problem, which can be used to formally define the highway dimension of a graph, are both W[1]-hard. Furthermore, by the result of Abraham et al. [ICALP 2011] there is a polynomial-time O(log k)-approximation algorithm for r-HD, but for r-SPC such an algorithm is not known. We prove that r-SPC admits a polynomial-time O(log n)-approximation algorithm.

Cite as

Johannes Blum, Yann Disser, Andreas Emil Feldmann, Siddharth Gupta, and Anna Zych-Pawlewicz. On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{blum_et_al:LIPIcs.IPEC.2022.5,
  author =	{Blum, Johannes and Disser, Yann and Feldmann, Andreas Emil and Gupta, Siddharth and Zych-Pawlewicz, Anna},
  title =	{{On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{5:1--5:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.5},
  URN =		{urn:nbn:de:0030-drops-173612},
  doi =		{10.4230/LIPIcs.IPEC.2022.5},
  annote =	{Keywords: sparse hitting set, fair vertex cover, highway dimension}
}
Document
A Simpler QPTAS for Scheduling Jobs with Precedence Constraints

Authors: Syamantak Das and Andreas Wiese

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We study the classical scheduling problem of minimizing the makespan of a set of unit size jobs with precedence constraints on parallel identical machines. Research on the problem dates back to the landmark paper by Graham from 1966 who showed that the simple List Scheduling algorithm is a (2-1/m)-approximation. Interestingly, it is open whether the problem is NP-hard if m = 3 which is one of the few remaining open problems in the seminal book by Garey and Johnson. Recently, quite some progress has been made for the setting that m is a constant. In a break-through paper, Levey and Rothvoss presented a (1+ε)-approximation with a running time of n^{(log n)^{O((m²/ε²)log log n)}} [STOC 2016, SICOMP 2019] and this running time was improved to quasi-polynomial by Garg [ICALP 2018] and to even n^O_{m,ε}(log³log n) by Li [SODA 2021]. These results use techniques like LP-hierarchies, conditioning on certain well-selected jobs, and abstractions like (partial) dyadic systems and virtually valid schedules. In this paper, we present a QPTAS for the problem which is arguably simpler than the previous algorithms. We just guess the positions of certain jobs in the optimal solution, recurse on a set of guessed subintervals, and fill in the remaining jobs with greedy routines. We believe that also our analysis is more accessible, in particular since we do not use (LP-)hierarchies or abstractions of the problem like the ones above, but we guess properties of the optimal solution directly.

Cite as

Syamantak Das and Andreas Wiese. A Simpler QPTAS for Scheduling Jobs with Precedence Constraints. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 40:1-40:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{das_et_al:LIPIcs.ESA.2022.40,
  author =	{Das, Syamantak and Wiese, Andreas},
  title =	{{A Simpler QPTAS for Scheduling Jobs with Precedence Constraints}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{40:1--40:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.40},
  URN =		{urn:nbn:de:0030-drops-169782},
  doi =		{10.4230/LIPIcs.ESA.2022.40},
  annote =	{Keywords: makespan minimization, precedence constraints, QPTAS}
}
Document
Approximation Algorithms for Round-UFP and Round-SAP

Authors: Debajyoti Kar, Arindam Khan, and Andreas Wiese

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We study Round-UFP and Round-SAP, two generalizations of the classical Bin Packing problem that correspond to the unsplittable flow problem on a path (UFP) and the storage allocation problem (SAP), respectively. We are given a path with capacities on its edges and a set of jobs where for each job we are given a demand and a subpath. In Round-UFP, the goal is to find a packing of all jobs into a minimum number of copies (rounds) of the given path such that for each copy, the total demand of jobs on any edge does not exceed the capacity of the respective edge. In Round-SAP, the jobs are considered to be rectangles and the goal is to find a non-overlapping packing of these rectangles into a minimum number of rounds such that all rectangles lie completely below the capacity profile of the edges. We show that in contrast to Bin Packing, both problems do not admit an asymptotic polynomial-time approximation scheme (APTAS), even when all edge capacities are equal. However, for this setting, we obtain asymptotic (2+ε)-approximations for both problems. For the general case, we obtain an O(log log n)-approximation algorithm and an O(log log 1/δ)-approximation under (1+δ)-resource augmentation for both problems. For the intermediate setting of the no bottleneck assumption (i.e., the maximum job demand is at most the minimum edge capacity), we obtain an absolute 12- and an asymptotic (16+ε)-approximation algorithm for Round-UFP and Round-SAP, respectively.

Cite as

Debajyoti Kar, Arindam Khan, and Andreas Wiese. Approximation Algorithms for Round-UFP and Round-SAP. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 71:1-71:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kar_et_al:LIPIcs.ESA.2022.71,
  author =	{Kar, Debajyoti and Khan, Arindam and Wiese, Andreas},
  title =	{{Approximation Algorithms for Round-UFP and Round-SAP}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{71:1--71:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.71},
  URN =		{urn:nbn:de:0030-drops-170098},
  doi =		{10.4230/LIPIcs.ESA.2022.71},
  annote =	{Keywords: Approximation Algorithms, Scheduling, Rectangle Packing}
}
Document
Membership Problems in Finite Groups

Authors: Markus Lohrey, Andreas Rosowski, and Georg Zetzsche

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
We show that the subset sum problem, the knapsack problem and the rational subset membership problem for permutation groups are NP-complete. Concerning the knapsack problem we obtain NP-completeness for every fixed n ≥ 3, where n is the number of permutations in the knapsack equation. In other words: membership in products of three cyclic permutation groups is NP-complete. This sharpens a result of Luks [Eugene M. Luks, 1991], which states NP-completeness of the membership problem for products of three abelian permutation groups. We also consider the context-free membership problem in permutation groups and prove that it is PSPACE-complete but NP-complete for a restricted class of context-free grammars where acyclic derivation trees must have constant Horton-Strahler number. Our upper bounds hold for black box groups. The results for context-free membership problems in permutation groups yield new complexity bounds for various intersection non-emptiness problems for DFAs and a single context-free grammar.

Cite as

Markus Lohrey, Andreas Rosowski, and Georg Zetzsche. Membership Problems in Finite Groups. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 71:1-71:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lohrey_et_al:LIPIcs.MFCS.2022.71,
  author =	{Lohrey, Markus and Rosowski, Andreas and Zetzsche, Georg},
  title =	{{Membership Problems in Finite Groups}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{71:1--71:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.71},
  URN =		{urn:nbn:de:0030-drops-168694},
  doi =		{10.4230/LIPIcs.MFCS.2022.71},
  annote =	{Keywords: algorithms for finite groups, intersection non-emptiness problems, knapsack problems in groups}
}
Document
Track A: Algorithms, Complexity and Games
Fast Sampling via Spectral Independence Beyond Bounded-Degree Graphs

Authors: Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Spectral independence is a recently-developed framework for obtaining sharp bounds on the convergence time of the classical Glauber dynamics. This new framework has yielded optimal O(n log n) sampling algorithms on bounded-degree graphs for a large class of problems throughout the so-called uniqueness regime, including, for example, the problems of sampling independent sets, matchings, and Ising-model configurations. Our main contribution is to relax the bounded-degree assumption that has so far been important in establishing and applying spectral independence. Previous methods for avoiding degree bounds rely on using L^p-norms to analyse contraction on graphs with bounded connective constant (Sinclair, Srivastava, Yin; FOCS'13). The non-linearity of L^p-norms is an obstacle to applying these results to bound spectral independence. Our solution is to capture the L^p-analysis recursively by amortising over the subtrees of the recurrence used to analyse contraction. Our method generalises previous analyses that applied only to bounded-degree graphs. As a main application of our techniques, we consider the random graph G(n,d/n), where the previously known algorithms run in time n^O(log d) or applied only to large d. We refine these algorithmic bounds significantly, and develop fast nearly linear algorithms based on Glauber dynamics that apply to all constant d, throughout the uniqueness regime.

Cite as

Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič. Fast Sampling via Spectral Independence Beyond Bounded-Degree Graphs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bezakova_et_al:LIPIcs.ICALP.2022.21,
  author =	{Bez\'{a}kov\'{a}, Ivona and Galanis, Andreas and Goldberg, Leslie Ann and \v{S}tefankovi\v{c}, Daniel},
  title =	{{Fast Sampling via Spectral Independence Beyond Bounded-Degree Graphs}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{21:1--21:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.21},
  URN =		{urn:nbn:de:0030-drops-163622},
  doi =		{10.4230/LIPIcs.ICALP.2022.21},
  annote =	{Keywords: Hard-core model, Random graphs, Markov chains}
}
Document
Track A: Algorithms, Complexity and Games
Metastability of the Potts Ferromagnet on Random Regular Graphs

Authors: Amin Coja-Oghlan, Andreas Galanis, Leslie Ann Goldberg, Jean Bernoulli Ravelomanana, Daniel Štefankovič, and Eric Vigoda

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We study the performance of Markov chains for the q-state ferromagnetic Potts model on random regular graphs. While the cases of the grid and the complete graph are by now well-understood, the case of random regular graphs has resisted a detailed analysis and, in fact, even analysing the properties of the Potts distribution has remained elusive. It is conjectured that the performance of Markov chains is dictated by metastability phenomena, i.e., the presence of "phases" (clusters) in the sample space where Markov chains with local update rules, such as the Glauber dynamics, are bound to take exponential time to escape, and therefore cause slow mixing. The phases that are believed to drive these metastability phenomena in the case of the Potts model emerge as local, rather than global, maxima of the so-called Bethe functional, and previous approaches of analysing these phases based on optimisation arguments fall short of the task. Our first contribution is to detail the emergence of the metastable phases for the q-state Potts model on the d-regular random graph for all integers q,d ≥ 3, and establish that for an interval of temperatures, delineated by the uniqueness and a broadcasting threshold on the d-regular tree, the two phases coexist. The proofs are based on a conceptual connection between spatial properties and the structure of the Potts distribution on the random regular graph, rather than complicated moment calculations. This significantly refines earlier results by Helmuth, Jenssen, and Perkins who had established phase coexistence for a small interval around the so-called ordered-disordered threshold (via different arguments) that applied for large q and d ≥ 5. Based on our new structural understanding of the model, we obtain various algorithmic consequences. We first complement recent fast mixing results for Glauber dynamics by Blanca and Gheissari below the uniqueness threshold, showing an exponential lower bound on the mixing time above the uniqueness threshold. Then, we obtain tight results even for the non-local and more elaborate Swendsen-Wang chain, where we establish slow mixing/metastability for the whole interval of temperatures where the chain is conjectured to mix slowly on the random regular graph. The key is to bound the conductance of the chains using a random graph "planting" argument combined with delicate bounds on random-graph percolation.

Cite as

Amin Coja-Oghlan, Andreas Galanis, Leslie Ann Goldberg, Jean Bernoulli Ravelomanana, Daniel Štefankovič, and Eric Vigoda. Metastability of the Potts Ferromagnet on Random Regular Graphs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 45:1-45:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cojaoghlan_et_al:LIPIcs.ICALP.2022.45,
  author =	{Coja-Oghlan, Amin and Galanis, Andreas and Goldberg, Leslie Ann and Ravelomanana, Jean Bernoulli and \v{S}tefankovi\v{c}, Daniel and Vigoda, Eric},
  title =	{{Metastability of the Potts Ferromagnet on Random Regular Graphs}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{45:1--45:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.45},
  URN =		{urn:nbn:de:0030-drops-163865},
  doi =		{10.4230/LIPIcs.ICALP.2022.45},
  annote =	{Keywords: Markov chains, sampling, random regular graph, Potts model}
}
Document
Track A: Algorithms, Complexity and Games
Approximating Observables Is as Hard as Counting

Authors: Andreas Galanis, Daniel Štefankovič, and Eric Vigoda

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We study the computational complexity of estimating local observables for Gibbs distributions. A simple combinatorial example is the average size of an independent set in a graph. A recent work of Galanis et al (2021) established NP-hardness of approximating the average size of an independent set utilizing hardness of the corresponding optimization problem and the related phase transition behavior. We instead consider settings where the underlying optimization problem is easily solvable. Our main contribution is to classify the complexity of approximating a wide class of observables via a generic reduction from approximate counting to the problem of estimating local observables. The key idea is to use the observables to interpolate the counting problem. Using this new approach, we are able to study observables on bipartite graphs where the underlying optimization problem is easy but the counting problem is believed to be hard. The most-well studied class of graphs that was excluded from previous hardness results were bipartite graphs. We establish hardness for estimating the average size of the independent set in bipartite graphs of maximum degree 6; more generally, we show tight hardness results for general vertex-edge observables for antiferromagnetic 2-spin systems on bipartite graphs. Our techniques go beyond 2-spin systems, and for the ferromagnetic Potts model we establish hardness of approximating the number of monochromatic edges in the same region as known hardness of approximate counting results.

Cite as

Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Approximating Observables Is as Hard as Counting. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 63:1-63:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{galanis_et_al:LIPIcs.ICALP.2022.63,
  author =	{Galanis, Andreas and \v{S}tefankovi\v{c}, Daniel and Vigoda, Eric},
  title =	{{Approximating Observables Is as Hard as Counting}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{63:1--63:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.63},
  URN =		{urn:nbn:de:0030-drops-164047},
  doi =		{10.4230/LIPIcs.ICALP.2022.63},
  annote =	{Keywords: Approximate Counting, Averages, Phase Transitions, Random Structures}
}
Document
Track A: Algorithms, Complexity and Games
Tight Approximation Algorithms for Two-Dimensional Guillotine Strip Packing

Authors: Arindam Khan, Aditya Lonkar, Arnab Maiti, Amatya Sharma, and Andreas Wiese

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
In the Strip Packing problem (SP), we are given a vertical half-strip [0,W]×[0,∞) and a set of n axis-aligned rectangles of width at most W. The goal is to find a non-overlapping packing of all rectangles into the strip such that the height of the packing is minimized. A well-studied and frequently used practical constraint is to allow only those packings that are guillotine separable, i.e., every rectangle in the packing can be obtained by recursively applying a sequence of edge-to-edge axis-parallel cuts (guillotine cuts) that do not intersect any item of the solution. In this paper, we study approximation algorithms for the Guillotine Strip Packing problem (GSP), i.e., the Strip Packing problem where we require additionally that the packing needs to be guillotine separable. This problem generalizes the classical Bin Packing problem and also makespan minimization on identical machines, and thus it is already strongly NP-hard. Moreover, due to a reduction from the Partition problem, it is NP-hard to obtain a polynomial-time (3/2-ε)-approximation algorithm for GSP for any ε > 0 (exactly as Strip Packing). We provide a matching polynomial time (3/2+ε)-approximation algorithm for GSP. Furthermore, we present a pseudo-polynomial time (1+ε)-approximation algorithm for GSP. This is surprising as it is NP-hard to obtain a (5/4-ε)-approximation algorithm for (general) Strip Packing in pseudo-polynomial time. Thus, our results essentially settle the approximability of GSP for both the polynomial and the pseudo-polynomial settings.

Cite as

Arindam Khan, Aditya Lonkar, Arnab Maiti, Amatya Sharma, and Andreas Wiese. Tight Approximation Algorithms for Two-Dimensional Guillotine Strip Packing. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 80:1-80:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{khan_et_al:LIPIcs.ICALP.2022.80,
  author =	{Khan, Arindam and Lonkar, Aditya and Maiti, Arnab and Sharma, Amatya and Wiese, Andreas},
  title =	{{Tight Approximation Algorithms for Two-Dimensional Guillotine Strip Packing}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{80:1--80:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.80},
  URN =		{urn:nbn:de:0030-drops-164215},
  doi =		{10.4230/LIPIcs.ICALP.2022.80},
  annote =	{Keywords: Approximation Algorithms, Two-Dimensional Packing, Rectangle Packing, Guillotine Cuts, Computational Geometry}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Reachability in Bidirected Pushdown VASS

Authors: Moses Ganardi, Rupak Majumdar, Andreas Pavlogiannis, Lia Schütze, and Georg Zetzsche

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
A pushdown vector addition system with states (PVASS) extends the model of vector addition systems with a pushdown store. A PVASS is said to be bidirected if every transition (pushing/popping a symbol or modifying a counter) has an accompanying opposite transition that reverses the effect. Bidirectedness arises naturally in many models; it can also be seen as a overapproximation of reachability. We show that the reachability problem for bidirected PVASS is decidable in Ackermann time and primitive recursive for any fixed dimension. For the special case of one-dimensional bidirected PVASS, we show reachability is in PSPACE, and in fact in polynomial time if the stack is polynomially bounded. Our results are in contrast to the directed setting, where decidability of reachability is a long-standing open problem already for one dimensional PVASS, and there is a PSPACE-lower bound already for one-dimensional PVASS with bounded stack. The reachability relation in the bidirected (stateless) case is a congruence over ℕ^d. Our upper bounds exploit saturation techniques over congruences. In particular, we show novel elementary-time constructions of semilinear representations of congruences generated by finitely many vector pairs. In the case of one-dimensional PVASS, we employ a saturation procedure over bounded-size counters. We complement our upper bound with a TOWER-hardness result for arbitrary dimension and k-EXPSPACE hardness in dimension 2k+6 using a technique by Lazić and Totzke to implement iterative exponentiations.

Cite as

Moses Ganardi, Rupak Majumdar, Andreas Pavlogiannis, Lia Schütze, and Georg Zetzsche. Reachability in Bidirected Pushdown VASS. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 124:1-124:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ganardi_et_al:LIPIcs.ICALP.2022.124,
  author =	{Ganardi, Moses and Majumdar, Rupak and Pavlogiannis, Andreas and Sch\"{u}tze, Lia and Zetzsche, Georg},
  title =	{{Reachability in Bidirected Pushdown VASS}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{124:1--124:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.124},
  URN =		{urn:nbn:de:0030-drops-164651},
  doi =		{10.4230/LIPIcs.ICALP.2022.124},
  annote =	{Keywords: Vector addition systems, Pushdown, Reachability, Decidability, Complexity}
}
Document
Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time

Authors: Franziska Eberle, Nicole Megow, Lukas Nölke, Bertrand Simon, and Andreas Wiese

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
Knapsack problems are among the most fundamental problems in optimization. In the Multiple Knapsack problem, we are given multiple knapsacks with different capacities and items with values and sizes. The task is to find a subset of items of maximum total value that can be packed into the knapsacks without exceeding the capacities. We investigate this problem and special cases thereof in the context of dynamic algorithms and design data structures that efficiently maintain near-optimal knapsack solutions for dynamically changing input. More precisely, we handle the arrival and departure of individual items or knapsacks during the execution of the algorithm with worst-case update time polylogarithmic in the number of items. As the optimal and any approximate solution may change drastically, we maintain implicit solutions and support polylogarithmic time query operations that can return the computed solution value and the packing of any given item. While dynamic algorithms are well-studied in the context of graph problems, there is hardly any work on packing problems (and generally much less on non-graph problems). Motivated by the theoretical interest in knapsack problems and their practical relevance, our work bridges this gap.

Cite as

Franziska Eberle, Nicole Megow, Lukas Nölke, Bertrand Simon, and Andreas Wiese. Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 18:1-18:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{eberle_et_al:LIPIcs.FSTTCS.2021.18,
  author =	{Eberle, Franziska and Megow, Nicole and N\"{o}lke, Lukas and Simon, Bertrand and Wiese, Andreas},
  title =	{{Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{18:1--18:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.18},
  URN =		{urn:nbn:de:0030-drops-155297},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.18},
  annote =	{Keywords: Fully dynamic algorithms, knapsack problem, approximation schemes}
}
Document
Quantitative Verification on Product Graphs of Small Treewidth

Authors: Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
Product graphs arise naturally in formal verification and program analysis. For example, the analysis of two concurrent threads requires the product of two component control-flow graphs, and for language inclusion of deterministic automata the product of two automata is constructed. In many cases, the component graphs have constant treewidth, e.g., when the input contains control-flow graphs of programs. We consider the algorithmic analysis of products of two constant-treewidth graphs with respect to three classic specification languages, namely, (a) algebraic properties, (b) mean-payoff properties, and (c) initial credit for energy properties. Our main contributions are as follows. Consider a graph G that is the product of two constant-treewidth graphs of size n each. First, given an idempotent semiring, we present an algorithm that computes the semiring transitive closure of G in time Õ(n⁴). Since the output has size Θ(n⁴), our algorithm is optimal (up to polylog factors). Second, given a mean-payoff objective, we present an O(n³)-time algorithm for deciding whether the value of a starting state is non-negative, improving the previously known O(n⁴) bound. Third, given an initial credit for energy objective, we present an O(n⁵)-time algorithm for computing the minimum initial credit for all nodes of G, improving the previously known O(n⁸) bound. At the heart of our approach lies an algorithm for the efficient construction of strongly-balanced tree decompositions of constant-treewidth graphs. Given a constant-treewidth graph G' of n nodes and a positive integer λ, our algorithm constructs a binary tree decomposition of G' of width O(λ) with the property that the size of each subtree decreases geometrically with rate (1/2 + 2^{-λ}).

Cite as

Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. Quantitative Verification on Product Graphs of Small Treewidth. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 42:1-42:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.FSTTCS.2021.42,
  author =	{Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
  title =	{{Quantitative Verification on Product Graphs of Small Treewidth}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{42:1--42:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.42},
  URN =		{urn:nbn:de:0030-drops-155533},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.42},
  annote =	{Keywords: graph algorithms, algebraic paths, mean-payoff, initial credit for energy}
}
Document
Faster (1+ε)-Approximation for Unsplittable Flow on a Path via Resource Augmentation and Back

Authors: Fabrizio Grandoni, Tobias Mömke, and Andreas Wiese

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
Unsplittable flow on a path (UFP) is an important and well-studied problem. We are given a path with capacities on its edges, and a set of tasks where for each task we are given a demand, a subpath, and a weight. The goal is to select the set of tasks of maximum total weight whose total demands do not exceed the capacity on any edge. UFP admits an (1+ε)-approximation with a running time of n^{O_{ε}(poly(log n))}, i.e., a QPTAS {[}Bansal et al., STOC 2006; Batra et al., SODA 2015{]} and it is considered an important open problem to construct a PTAS. To this end, in a series of papers polynomial time approximation algorithms have been developed, which culminated in a (5/3+ε)-approximation {[}Grandoni et al., STOC 2018{]} and very recently an approximation ratio of (1+1/(e+1)+ε) < 1.269 {[}Grandoni et al., 2020{]}. In this paper, we address the search for a PTAS from a different angle: we present a faster (1+ε)-approximation with a running time of only n^{O_{ε}(log log n)}. We first give such a result in the relaxed setting of resource augmentation and then transform it to an algorithm without resource augmentation. For this, we present a framework which transforms algorithms for (a slight generalization of) UFP under resource augmentation in a black-box manner into algorithms for UFP without resource augmentation, with only negligible loss.

Cite as

Fabrizio Grandoni, Tobias Mömke, and Andreas Wiese. Faster (1+ε)-Approximation for Unsplittable Flow on a Path via Resource Augmentation and Back. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 49:1-49:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{grandoni_et_al:LIPIcs.ESA.2021.49,
  author =	{Grandoni, Fabrizio and M\"{o}mke, Tobias and Wiese, Andreas},
  title =	{{Faster (1+\epsilon)-Approximation for Unsplittable Flow on a Path via Resource Augmentation and Back}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{49:1--49:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.49},
  URN =		{urn:nbn:de:0030-drops-146301},
  doi =		{10.4230/LIPIcs.ESA.2021.49},
  annote =	{Keywords: Approximation Algorithms, Unsplittable Flow, Dynamic Programming}
}
  • Refine by Author
  • 22 Wiese, Andreas
  • 14 Björklund, Andreas
  • 8 Feldmann, Andreas Emil
  • 7 Galanis, Andreas
  • 7 Kaski, Petteri
  • Show More...

  • Refine by Classification
  • 7 Theory of computation → Fixed parameter tractability
  • 7 Theory of computation → Packing and covering problems
  • 6 Theory of computation → Design and analysis of algorithms
  • 4 Mathematics of computing → Graph algorithms
  • 4 Theory of computation → Approximation algorithms analysis
  • Show More...

  • Refine by Keyword
  • 7 approximation algorithms
  • 4 Approximation Algorithms
  • 4 Approximation algorithms
  • 4 Hamiltonian cycle
  • 3 Markov chains
  • Show More...

  • Refine by Type
  • 80 document

  • Refine by Publication Year
  • 11 2018
  • 9 2020
  • 9 2022
  • 8 2017
  • 8 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail