10 Search Results for "Newport, Calvin"


Document
Smoothed Analysis of Information Spreading in Dynamic Networks

Authors: Michael Dinitz, Jeremy Fineman, Seth Gilbert, and Calvin Newport

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)


Abstract
The best known solutions for k-message broadcast in dynamic networks of size n require Ω(nk) rounds. In this paper, we see if these bounds can be improved by smoothed analysis. To do so, we study perhaps the most natural randomized algorithm for disseminating tokens in this setting: at every time step, choose a token to broadcast randomly from the set of tokens you know. We show that with even a small amount of smoothing (i.e., one random edge added per round), this natural strategy solves k-message broadcast in Õ(n+k³) rounds, with high probability, beating the best known bounds for k = o(√n) and matching the Ω(n+k) lower bound for static networks for k = O(n^{1/3}) (ignoring logarithmic factors). In fact, the main result we show is even stronger and more general: given 𝓁-smoothing (i.e., 𝓁 random edges added per round), this simple strategy terminates in O(kn^{2/3}log^{1/3}(n)𝓁^{-1/3}) rounds. We then prove this analysis close to tight with an almost-matching lower bound. To better understand the impact of smoothing on information spreading, we next turn our attention to static networks, proving a tight bound of Õ(k√n) rounds to solve k-message broadcast, which is better than what our strategy can achieve in the dynamic setting. This confirms the intuition that although smoothed analysis reduces the difficulties induced by changing graph structures, it does not eliminate them altogether. Finally, we apply tools developed to support our smoothed analysis to prove an optimal result for k-message broadcast in so-called well-mixed networks in the absence of smoothing. By comparing this result to an existing lower bound for well-mixed networks, we establish a formal separation between oblivious and strongly adaptive adversaries with respect to well-mixed token spreading, partially resolving an open question on the impact of adversary strength on the k-message broadcast problem.

Cite as

Michael Dinitz, Jeremy Fineman, Seth Gilbert, and Calvin Newport. Smoothed Analysis of Information Spreading in Dynamic Networks. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 18:1-18:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dinitz_et_al:LIPIcs.DISC.2022.18,
  author =	{Dinitz, Michael and Fineman, Jeremy and Gilbert, Seth and Newport, Calvin},
  title =	{{Smoothed Analysis of Information Spreading in Dynamic Networks}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{18:1--18:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.18},
  URN =		{urn:nbn:de:0030-drops-172094},
  doi =		{10.4230/LIPIcs.DISC.2022.18},
  annote =	{Keywords: Smoothed Analysis, Dynamic networks, Gossip}
}
Document
The Capacity of Smartphone Peer-To-Peer Networks

Authors: Michael Dinitz, Magnús M. Halldórsson, Calvin Newport, and Alex Weaver

Published in: LIPIcs, Volume 146, 33rd International Symposium on Distributed Computing (DISC 2019)


Abstract
We study three capacity problems in the mobile telephone model, a network abstraction that models the peer-to-peer communication capabilities implemented in most commodity smartphone operating systems. The capacity of a network expresses how much sustained throughput can be maintained for a set of communication demands, and is therefore a fundamental bound on the usefulness of a network. Because of this importance, wireless network capacity has been active area of research for the last two decades. The three capacity problems that we study differ in the structure of the communication demands. The first problem is pairwise capacity, where the demands are (source, destination) pairs. Pairwise capacity is one of the most classical definitions, as it was analyzed in the seminal paper of Gupta and Kumar on wireless network capacity. The second problem we study is broadcast capacity, in which a single source must deliver packets to all other nodes in the network. Finally, we turn our attention to all-to-all capacity, in which all nodes must deliver packets to all other nodes. In all three of these problems we characterize the optimal achievable throughput for any given network, and design algorithms which asymptotically match this performance. We also study these problems in networks generated randomly by a process introduced by Gupta and Kumar, and fully characterize their achievable throughput. Interestingly, the techniques that we develop for all-to-all capacity also allow us to design a one-shot gossip algorithm that runs within a polylogarithmic factor of optimal in every graph. This largely resolves an open question from previous work on the one-shot gossip problem in this model.

Cite as

Michael Dinitz, Magnús M. Halldórsson, Calvin Newport, and Alex Weaver. The Capacity of Smartphone Peer-To-Peer Networks. In 33rd International Symposium on Distributed Computing (DISC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 146, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dinitz_et_al:LIPIcs.DISC.2019.14,
  author =	{Dinitz, Michael and Halld\'{o}rsson, Magn\'{u}s M. and Newport, Calvin and Weaver, Alex},
  title =	{{The Capacity of Smartphone Peer-To-Peer Networks}},
  booktitle =	{33rd International Symposium on Distributed Computing (DISC 2019)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-126-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{146},
  editor =	{Suomela, Jukka},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2019.14},
  URN =		{urn:nbn:de:0030-drops-113218},
  doi =		{10.4230/LIPIcs.DISC.2019.14},
  annote =	{Keywords: Capacity, Wireless, Mobile Telephone, Throughput}
}
Document
On Bioelectric Algorithms

Authors: Seth Gilbert, James Maguire, and Calvin Newport

Published in: LIPIcs, Volume 146, 33rd International Symposium on Distributed Computing (DISC 2019)


Abstract
Cellular bioelectricity describes the biological phenomenon in which cells in living tissue generate and maintain patterns of voltage gradients across their membranes induced by differing concentrations of charged ions. A growing body of research suggests that bioelectric patterns represent an ancient system that plays a key role in guiding many important developmental processes including tissue regeneration, tumor suppression, and embryogenesis. This paper applies techniques from distributed algorithm theory to help better understand how cells work together to form these patterns. To do so, we present the cellular bioelectric model (CBM), a new computational model that captures the primary capabilities and constraints of bioelectric interactions between cells and their environment. We use this model to investigate several important topics from the relevant biology research literature. We begin with symmetry breaking, analyzing a simple cell definition that when combined in single hop or multihop topologies, efficiently solves leader election and the maximal independent set problem, respectively - indicating that these classical symmetry breaking tasks are well-matched to bioelectric mechanisms. We then turn our attention to the information processing ability of bioelectric cells, exploring upper and lower bounds for approximate solutions to threshold and majority detection, and then proving that these systems are in fact Turing complete - resolving an open question about the computational power of bioelectric interactions.

Cite as

Seth Gilbert, James Maguire, and Calvin Newport. On Bioelectric Algorithms. In 33rd International Symposium on Distributed Computing (DISC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 146, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gilbert_et_al:LIPIcs.DISC.2019.19,
  author =	{Gilbert, Seth and Maguire, James and Newport, Calvin},
  title =	{{On Bioelectric Algorithms}},
  booktitle =	{33rd International Symposium on Distributed Computing (DISC 2019)},
  pages =	{19:1--19:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-126-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{146},
  editor =	{Suomela, Jukka},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2019.19},
  URN =		{urn:nbn:de:0030-drops-113267},
  doi =		{10.4230/LIPIcs.DISC.2019.19},
  annote =	{Keywords: biological distributed algorithms, bioelectric networks, natural algorithms}
}
Document
Approximate Neighbor Counting in Radio Networks

Authors: Calvin Newport and Chaodong Zheng

Published in: LIPIcs, Volume 125, 22nd International Conference on Principles of Distributed Systems (OPODIS 2018)


Abstract
For many distributed algorithms, neighborhood size is an important parameter. In radio networks, however, obtaining this information can be difficult due to ad hoc deployments and communication that occurs on a collision-prone shared channel. This paper conducts a comprehensive survey of the approximate neighbor counting problem, which requires nodes to obtain a constant factor approximation of the size of their network neighborhood. We produce new lower and upper bounds for three main variations of this problem in the radio network model: (a) the network is single-hop and every node must obtain an estimate of its neighborhood size; (b) the network is multi-hop and only a designated node must obtain an estimate of its neighborhood size; and (c) the network is multi-hop and every node must obtain an estimate of its neighborhood size. In studying these problem variations, we consider solutions with and without collision detection, and with both constant and high success probability. Some of our results are extensions of existing strategies, while others require technical innovations. We argue this collection of results provides insight into the nature of this well-motivated problem (including how it differs from related symmetry breaking tasks in radio networks), and provides a useful toolbox for algorithm designers tackling higher level problems that might benefit from neighborhood size estimates.

Cite as

Calvin Newport and Chaodong Zheng. Approximate Neighbor Counting in Radio Networks. In 22nd International Conference on Principles of Distributed Systems (OPODIS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 125, pp. 26:1-26:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{newport_et_al:LIPIcs.OPODIS.2018.26,
  author =	{Newport, Calvin and Zheng, Chaodong},
  title =	{{Approximate Neighbor Counting in Radio Networks}},
  booktitle =	{22nd International Conference on Principles of Distributed Systems (OPODIS 2018)},
  pages =	{26:1--26:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-098-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{125},
  editor =	{Cao, Jiannong and Ellen, Faith and Rodrigues, Luis and Ferreira, Bernardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2018.26},
  URN =		{urn:nbn:de:0030-drops-100860},
  doi =		{10.4230/LIPIcs.OPODIS.2018.26},
  annote =	{Keywords: Radio networks, neighborhood size estimation, approximate counting}
}
Document
On Simple Back-Off in Unreliable Radio Networks

Authors: Seth Gilbert, Nancy Lynch, Calvin Newport, and Dominik Pajak

Published in: LIPIcs, Volume 125, 22nd International Conference on Principles of Distributed Systems (OPODIS 2018)


Abstract
In this paper, we study local and global broadcast in the dual graph model, which describes communication in a radio network with both reliable and unreliable links. Existing work proved that efficient solutions to these problems are impossible in the dual graph model under standard assumptions. In real networks, however, simple back-off strategies tend to perform well for solving these basic communication tasks. We address this apparent paradox by introducing a new set of constraints to the dual graph model that better generalize the slow/fast fading behavior common in real networks. We prove that in the context of these new constraints, simple back-off strategies now provide efficient solutions to local and global broadcast in the dual graph model. We also precisely characterize how this efficiency degrades as the new constraints are reduced down to non-existent, and prove new lower bounds that establish this degradation as near optimal for a large class of natural algorithms. We conclude with an analysis of a more general model where we propose an enhanced back-off algorithm. These results provide theoretical foundations for the practical observation that simple back-off algorithms tend to work well even amid the complicated link dynamics of real radio networks.

Cite as

Seth Gilbert, Nancy Lynch, Calvin Newport, and Dominik Pajak. On Simple Back-Off in Unreliable Radio Networks. In 22nd International Conference on Principles of Distributed Systems (OPODIS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 125, pp. 27:1-27:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gilbert_et_al:LIPIcs.OPODIS.2018.27,
  author =	{Gilbert, Seth and Lynch, Nancy and Newport, Calvin and Pajak, Dominik},
  title =	{{On Simple Back-Off in Unreliable Radio Networks}},
  booktitle =	{22nd International Conference on Principles of Distributed Systems (OPODIS 2018)},
  pages =	{27:1--27:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-098-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{125},
  editor =	{Cao, Jiannong and Ellen, Faith and Rodrigues, Luis and Ferreira, Bernardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2018.27},
  URN =		{urn:nbn:de:0030-drops-100877},
  doi =		{10.4230/LIPIcs.OPODIS.2018.27},
  annote =	{Keywords: radio networks, broadcast, unreliable links, distributed algorithm, robustness}
}
Document
Fault-Tolerant Consensus with an Abstract MAC Layer

Authors: Calvin Newport and Peter Robinson

Published in: LIPIcs, Volume 121, 32nd International Symposium on Distributed Computing (DISC 2018)


Abstract
In this paper, we study fault-tolerant distributed consensus in wireless systems. In more detail, we produce two new randomized algorithms that solve this problem in the abstract MAC layer model, which captures the basic interface and communication guarantees provided by most wireless MAC layers. Our algorithms work for any number of failures, require no advance knowledge of the network participants or network size, and guarantee termination with high probability after a number of broadcasts that are polynomial in the network size. Our first algorithm satisfies the standard agreement property, while our second trades a faster termination guarantee in exchange for a looser agreement property in which most nodes agree on the same value. These are the first known fault-tolerant consensus algorithms for this model. In addition to our main upper bound results, we explore the gap between the abstract MAC layer and the standard asynchronous message passing model by proving fault-tolerant consensus is impossible in the latter in the absence of information regarding the network participants, even if we assume no faults, allow randomized solutions, and provide the algorithm a constant-factor approximation of the network size.

Cite as

Calvin Newport and Peter Robinson. Fault-Tolerant Consensus with an Abstract MAC Layer. In 32nd International Symposium on Distributed Computing (DISC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 121, pp. 38:1-38:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{newport_et_al:LIPIcs.DISC.2018.38,
  author =	{Newport, Calvin and Robinson, Peter},
  title =	{{Fault-Tolerant Consensus with an Abstract MAC Layer}},
  booktitle =	{32nd International Symposium on Distributed Computing (DISC 2018)},
  pages =	{38:1--38:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-092-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{121},
  editor =	{Schmid, Ulrich and Widder, Josef},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2018.38},
  URN =		{urn:nbn:de:0030-drops-98277},
  doi =		{10.4230/LIPIcs.DISC.2018.38},
  annote =	{Keywords: abstract MAC layer, wireless networks, consensus, fault tolerance}
}
Document
Brief Announcement
Brief Announcement: On Simple Back-Off in Unreliable Radio Networks

Authors: Seth Gilbert, Nancy Lynch, Calvin Newport, and Dominik Pajak

Published in: LIPIcs, Volume 121, 32nd International Symposium on Distributed Computing (DISC 2018)


Abstract
In this paper, we study local broadcast in the dual graph model, which describes communication in a radio network with both reliable and unreliable links. Existing work proved that efficient solutions to these problems are impossible in the dual graph model under standard assumptions. In real networks, however, simple back-off strategies tend to perform well for solving these basic communication tasks. We address this apparent paradox by introducing a new set of constraints to the dual graph model that better generalize the slow/fast fading behavior common in real networks. We prove that in the context of these new constraints, simple back-off strategies now provide efficient solutions to local broadcast in the dual graph model. These results provide theoretical foundations for the practical observation that simple back-off algorithms tend to work well even amid the complicated link dynamics of real radio networks.

Cite as

Seth Gilbert, Nancy Lynch, Calvin Newport, and Dominik Pajak. Brief Announcement: On Simple Back-Off in Unreliable Radio Networks. In 32nd International Symposium on Distributed Computing (DISC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 121, pp. 48:1-48:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{gilbert_et_al:LIPIcs.DISC.2018.48,
  author =	{Gilbert, Seth and Lynch, Nancy and Newport, Calvin and Pajak, Dominik},
  title =	{{Brief Announcement: On Simple Back-Off in Unreliable Radio Networks}},
  booktitle =	{32nd International Symposium on Distributed Computing (DISC 2018)},
  pages =	{48:1--48:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-092-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{121},
  editor =	{Schmid, Ulrich and Widder, Josef},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2018.48},
  URN =		{urn:nbn:de:0030-drops-98373},
  doi =		{10.4230/LIPIcs.DISC.2018.48},
  annote =	{Keywords: radio networks, broadcast, unreliable links, distributed algorithm, robustness}
}
Document
An Efficient Communication Abstraction for Dense Wireless Networks

Authors: Magnús M. Halldórsson, Fabian Kuhn, Nancy Lynch, and Calvin Newport

Published in: LIPIcs, Volume 91, 31st International Symposium on Distributed Computing (DISC 2017)


Abstract
In this paper we study the problem of developing efficient distributed algorithms for dense wireless networks. For many problems in this setting, fast solutions must leverage the reality that radio signals fade with distance, which can be exploited to enable concurrent communication among multiple sender/receiver pairs. To simplify the development of these algorithms we describe a new communication abstraction called FadingMAC which exposes the benefits of this concurrent communication, but also hides the details of the underlying low-level radio signal behavior. This approach splits efforts between those who develop useful algorithms that run on the abstraction, and those who implement the abstraction in concrete low-level wireless models, or on real hardware. After defining FadingMAC, we describe and analyze an efficient implementation of the abstraction in a standard low-level SINR-style network model. We then describe solutions to the following problems that run on the abstraction: max, min, sum, and mean computed over input values; process renaming; consensus and leader election; and optimal packet scheduling. Combining our abstraction implementation with these applications that run on the abstraction, we obtain near-optimal solutions to these problems in our low-level SINR model - significantly advancing the known results for distributed algorithms in this setting. Of equal importance to these concrete bounds, however, is the general idea advanced by this paper: as wireless networks become more dense, both theoreticians and practitioners must explore new communication abstractions that can help tame this density.

Cite as

Magnús M. Halldórsson, Fabian Kuhn, Nancy Lynch, and Calvin Newport. An Efficient Communication Abstraction for Dense Wireless Networks. In 31st International Symposium on Distributed Computing (DISC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 91, pp. 25:1-25:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{halldorsson_et_al:LIPIcs.DISC.2017.25,
  author =	{Halld\'{o}rsson, Magn\'{u}s M. and Kuhn, Fabian and Lynch, Nancy and Newport, Calvin},
  title =	{{An Efficient Communication Abstraction for Dense Wireless Networks}},
  booktitle =	{31st International Symposium on Distributed Computing (DISC 2017)},
  pages =	{25:1--25:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-053-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{91},
  editor =	{Richa, Andr\'{e}a},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2017.25},
  URN =		{urn:nbn:de:0030-drops-79898},
  doi =		{10.4230/LIPIcs.DISC.2017.25},
  annote =	{Keywords: wireless networks, abstractions, SINR, signal fading}
}
Document
Bounds for Blind Rate Adaptation

Authors: Seth Gilbert, Calvin Newport, and Tonghe Wang

Published in: LIPIcs, Volume 46, 19th International Conference on Principles of Distributed Systems (OPODIS 2015)


Abstract
A core challenge in wireless communication is choosing appropriate transmission rates for packets. This rate selection problem is well understood in the context of unicast communication from a sender to a known receiver that can reply with acknowledgments. The problem is more difficult, however, in the multicast scenario where a sender must communicate with a potentially large and changing group of receivers with varied link qualities. In such settings, it is inefficient to gather feedback, and achieving good performance for every receiver is complicated by the potential diversity of their link conditions. This paper tackles this problem from an algorithmic perspective: identifying near optimal strategies for selecting rates that guarantee every receiver achieves throughput within reasonable factors of the optimal capacity of its link to the sender. Our algorithms have the added benefit that they are blind: they assume the sender has no information about the network and receives no feedback on its transmissions. We then prove new lower bounds on the fundamental difficulty of achieving good performance in the presence of fast fading (rapid and frequent changes to link quality), and conclude by studying strategies for achieving good throughput over multiple hops. We argue that the implementation of our algorithms should be easy because of the feature of being blind (it is independent to the network structure and the quality of links, so it's robust to changes). Our theoretical framework yields many new open problems within this important general topic of distributed transmission rate selection.

Cite as

Seth Gilbert, Calvin Newport, and Tonghe Wang. Bounds for Blind Rate Adaptation. In 19th International Conference on Principles of Distributed Systems (OPODIS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 46, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{gilbert_et_al:LIPIcs.OPODIS.2015.8,
  author =	{Gilbert, Seth and Newport, Calvin and Wang, Tonghe},
  title =	{{Bounds for Blind Rate Adaptation}},
  booktitle =	{19th International Conference on Principles of Distributed Systems (OPODIS 2015)},
  pages =	{8:1--8:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-98-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{46},
  editor =	{Anceaume, Emmanuelle and Cachin, Christian and Potop-Butucaru, Maria},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2015.8},
  URN =		{urn:nbn:de:0030-drops-65998},
  doi =		{10.4230/LIPIcs.OPODIS.2015.8},
  annote =	{Keywords: bitrate, multicast, packet transmission, latency, competitive ratio, lower bound, fading}
}
Document
Leader Election in Unreliable Radio Networks

Authors: Mohsen Ghaffari and Calvin Newport

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
The dual graph model describes a radio network that contains both reliable and unreliable links. In recent years, this model has received significant attention by the distributed algorithms community [Kuhn/Lynch/Newport/Oshman/Richa, PODC 2010; Censor-Hillel/Gilbert/Kuhn/Lynch/Newport, Dist. Comp. 2014; Ghaffari/Haeupler/Lynch/Newport, DISC 2012; Ghaffari/Lynch/Newport, PODC 2013; Ghaffir/Kantor/Lynch/Newport, PODC 2014; Newport, DISC 2014; Ahmadi/Ghodselahi/Kuhn/Molla, OPODIS 2015; Lynch/Newport, PODC 2015]. Due to results in [Ghaffari/Lynch/Newport, PODC 2013], it is known that leader election plays a key role in enabling efficient computation in this difficult setting: a leader can synchronize the network in such a manner that most problems can be subsequently solved in time similar to the classical radio network model that lacks unreliable links. The feasibility of efficient leader election in the dual graph model, however, was left as an important open question. In this paper, we answer this question. In more detail, we prove new upper and lower bound results that characterize the complexity of leader election in this setting. By doing so, we reveal a surprising dichotomy: (1) under the assumption that the network size n is in the range 1 to N, where N is a large upper bound on the maximum possible network size (e.g., the ID space), leader election is fundamentally hard, requiring ~Omega(sqrt(N)) rounds to solve in the worst-case; (2) under the assumption that n is in the range 2 to N, however, the problem can be solved in only ~O(D) rounds, for network diameter D, matching the lower bound for leader election in the standard radio network model (within log factors) [Ghaffari/Haeupler, SODA 2013].

Cite as

Mohsen Ghaffari and Calvin Newport. Leader Election in Unreliable Radio Networks. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 138:1-138:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{ghaffari_et_al:LIPIcs.ICALP.2016.138,
  author =	{Ghaffari, Mohsen and Newport, Calvin},
  title =	{{Leader Election in Unreliable Radio Networks}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{138:1--138:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.138},
  URN =		{urn:nbn:de:0030-drops-62823},
  doi =		{10.4230/LIPIcs.ICALP.2016.138},
  annote =	{Keywords: Radio Networks, Leader Election, Unreliability, Randomized Algorithms}
}
  • Refine by Author
  • 10 Newport, Calvin
  • 5 Gilbert, Seth
  • 3 Lynch, Nancy
  • 2 Dinitz, Michael
  • 2 Halldórsson, Magnús M.
  • Show More...

  • Refine by Classification
  • 6 Theory of computation → Distributed algorithms
  • 2 Networks → Ad hoc networks
  • 1 Applied computing → Biological networks
  • 1 Computing methodologies → Distributed algorithms
  • 1 Networks → Network algorithms

  • Refine by Keyword
  • 2 broadcast
  • 2 distributed algorithm
  • 2 radio networks
  • 2 robustness
  • 2 unreliable links
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 4 2019
  • 2 2016
  • 2 2018
  • 1 2017
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail