10 Search Results for "Nisan, Noam"


Document
Strategyproof Scheduling with Predictions

Authors: Eric Balkanski, Vasilis Gkatzelis, and Xizhi Tan

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In their seminal paper that initiated the field of algorithmic mechanism design, Nisan and Ronen [Noam Nisan and Amir Ronen, 1999] studied the problem of designing strategyproof mechanisms for scheduling jobs on unrelated machines aiming to minimize the makespan. They provided a strategyproof mechanism that achieves an n-approximation and they made the bold conjecture that this is the best approximation achievable by any deterministic strategyproof scheduling mechanism. After more than two decades and several efforts, n remains the best known approximation and very recent work by Christodoulou et al. [George Christodoulou et al., 2021] has been able to prove an Ω(√n) approximation lower bound for all deterministic strategyproof mechanisms. This strong negative result, however, heavily depends on the fact that the performance of these mechanisms is evaluated using worst-case analysis. To overcome such overly pessimistic, and often uninformative, worst-case bounds, a surge of recent work has focused on the "learning-augmented framework", whose goal is to leverage machine-learned predictions to obtain improved approximations when these predictions are accurate (consistency), while also achieving near-optimal worst-case approximations even when the predictions are arbitrarily wrong (robustness). In this work, we study the classic strategic scheduling problem of Nisan and Ronen [Noam Nisan and Amir Ronen, 1999] using the learning-augmented framework and give a deterministic polynomial-time strategyproof mechanism that is 6-consistent and 2n-robust. We thus achieve the "best of both worlds": an O(1) consistency and an O(n) robustness that asymptotically matches the best-known approximation. We then extend this result to provide more general worst-case approximation guarantees as a function of the prediction error. Finally, we complement our positive results by showing that any 1-consistent deterministic strategyproof mechanism has unbounded robustness.

Cite as

Eric Balkanski, Vasilis Gkatzelis, and Xizhi Tan. Strategyproof Scheduling with Predictions. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 11:1-11:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{balkanski_et_al:LIPIcs.ITCS.2023.11,
  author =	{Balkanski, Eric and Gkatzelis, Vasilis and Tan, Xizhi},
  title =	{{Strategyproof Scheduling with Predictions}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{11:1--11:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.11},
  URN =		{urn:nbn:de:0030-drops-175143},
  doi =		{10.4230/LIPIcs.ITCS.2023.11},
  annote =	{Keywords: Mechanism Design with Predictions, Strategyproof Scheduling}
}
Document
The Approximate Degree of Bipartite Perfect Matching

Authors: Gal Beniamini

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
The approximate degree of a Boolean function is the least degree of a real multilinear polynomial approximating it in the 𝓁_∞-norm over the Boolean hypercube. We show that the approximate degree of the Bipartite Perfect Matching function, which is the indicator over all bipartite graphs having a perfect matching of order n, is Θ̃(n^(3/2)). The upper bound is obtained by fully characterizing the unique multilinear polynomial representing the Boolean dual of the perfect matching function, over the reals. Crucially, we show that this polynomial has very small 𝓁₁-norm - only exponential in Θ(n log n). The lower bound follows by bounding the spectral sensitivity of the perfect matching function, which is the spectral radius of its cut-graph on the hypercube [Aaronson et al., 2021; Huang, 2019]. We show that the spectral sensitivity of perfect matching is exactly Θ(n^(3/2)).

Cite as

Gal Beniamini. The Approximate Degree of Bipartite Perfect Matching. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 1:1-1:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{beniamini:LIPIcs.CCC.2022.1,
  author =	{Beniamini, Gal},
  title =	{{The Approximate Degree of Bipartite Perfect Matching}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{1:1--1:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.1},
  URN =		{urn:nbn:de:0030-drops-165634},
  doi =		{10.4230/LIPIcs.CCC.2022.1},
  annote =	{Keywords: Bipartite Perfect Matching, Boolean Functions, Approximate Degree}
}
Document
RANDOM
Pseudorandom Generators for Read-Once Monotone Branching Programs

Authors: Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
Motivated by the derandomization of space-bounded computation, there has been a long line of work on constructing pseudorandom generators (PRGs) against various forms of read-once branching programs (ROBPs), with a goal of improving the O(log² n) seed length of Nisan’s classic construction [Noam Nisan, 1992] to the optimal O(log n). In this work, we construct an explicit PRG with seed length Õ(log n) for constant-width ROBPs that are monotone, meaning that the states at each time step can be ordered so that edges with the same labels never cross each other. Equivalently, for each fixed input, the transition functions are a monotone function of the state. This result is complementary to a line of work that gave PRGs with seed length O(log n) for (ordered) permutation ROBPs of constant width [Braverman et al., 2014; Koucký et al., 2011; De, 2011; Thomas Steinke, 2012], since the monotonicity constraint can be seen as the "opposite" of the permutation constraint. Our PRG also works for monotone ROBPs that can read the input bits in any order, which are strictly more powerful than read-once AC⁰. Our PRG achieves better parameters (in terms of the dependence on the depth of the circuit) than the best previous pseudorandom generator for read-once AC⁰, due to Doron, Hatami, and Hoza [Doron et al., 2019]. Our pseudorandom generator construction follows Ajtai and Wigderson’s approach of iterated pseudorandom restrictions [Ajtai and Wigderson, 1989; Gopalan et al., 2012]. We give a randomness-efficient width-reduction process which proves that the branching program simplifies to an O(log n)-junta after only O(log log n) independent applications of the Forbes-Kelley pseudorandom restrictions [Michael A. Forbes and Zander Kelley, 2018].

Cite as

Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan. Pseudorandom Generators for Read-Once Monotone Branching Programs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 58:1-58:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{doron_et_al:LIPIcs.APPROX/RANDOM.2021.58,
  author =	{Doron, Dean and Meka, Raghu and Reingold, Omer and Tal, Avishay and Vadhan, Salil},
  title =	{{Pseudorandom Generators for Read-Once Monotone Branching Programs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{58:1--58:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.58},
  URN =		{urn:nbn:de:0030-drops-147513},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.58},
  annote =	{Keywords: Branching programs, pseudorandom generators, constant depth circuits}
}
Document
Separating ABPs and Some Structured Formulas in the Non-Commutative Setting

Authors: Prerona Chatterjee

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
The motivating question for this work is a long standing open problem, posed by Nisan [Noam Nisan, 1991], regarding the relative powers of algebraic branching programs (ABPs) and formulas in the non-commutative setting. Even though the general question remains open, we make some progress towards its resolution. To that effect, we generalise the notion of ordered polynomials in the non-commutative setting (defined by Hrubeš, Wigderson and Yehudayoff [Hrubeš et al., 2011]) to define abecedarian polynomials and models that naturally compute them. Our main contribution is a possible new approach towards resolving the VF_{nc} vs VBP_{nc} question, via lower bounds against abecedarian formulas. In particular, we show the following. There is an explicit n²-variate degree d abecedarian polynomial f_{n,d}(𝐱) such that - f_{n, d}(𝐱) can be computed by an abecedarian ABP of size O(nd); - any abecedarian formula computing f_{n, log n}(𝐱) must have size at least n^{Ω(log log n)}. We also show that a super-polynomial lower bound against abecedarian formulas for f_{log n, n}(𝐱) would separate the powers of formulas and ABPs in the non-commutative setting.

Cite as

Prerona Chatterjee. Separating ABPs and Some Structured Formulas in the Non-Commutative Setting. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 7:1-7:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chatterjee:LIPIcs.CCC.2021.7,
  author =	{Chatterjee, Prerona},
  title =	{{Separating ABPs and Some Structured Formulas in the Non-Commutative Setting}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{7:1--7:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.7},
  URN =		{urn:nbn:de:0030-drops-142812},
  doi =		{10.4230/LIPIcs.CCC.2021.7},
  annote =	{Keywords: Non-Commutative Formulas, Lower Bound, Separating ABPs and Formulas}
}
Document
Error Reduction for Weighted PRGs Against Read Once Branching Programs

Authors: Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
Weighted pseudorandom generators (WPRGs), introduced by Braverman, Cohen and Garg [Braverman et al., 2020], are a generalization of pseudorandom generators (PRGs) in which arbitrary real weights are considered, rather than a probability mass. Braverman et al. constructed WPRGs against read once branching programs (ROBPs) with near-optimal dependence on the error parameter. Chattopadhyay and Liao [Eshan Chattopadhyay and Jyun-Jie Liao, 2020] somewhat simplified the technically involved BCG construction, also obtaining some improvement in parameters. In this work we devise an error reduction procedure for PRGs against ROBPs. More precisely, our procedure transforms any PRG against length n width w ROBP with error 1/poly(n) having seed length s to a WPRG with seed length s + O(logw/(ε) ⋅ log log1/(ε)). By instantiating our procedure with Nisan’s PRG [Noam Nisan, 1992] we obtain a WPRG with seed length O(log{n} ⋅ log(nw) + logw/(ε) ⋅ log log 1/(ε)). This improves upon [Braverman et al., 2020] and is incomparable with [Eshan Chattopadhyay and Jyun-Jie Liao, 2020]. Our construction is significantly simpler on the technical side and is conceptually cleaner. Another advantage of our construction is its low space complexity O(log{nw})+poly(log log1/(ε)) which is logarithmic in n for interesting values of the error parameter ε. Previous constructions (like [Braverman et al., 2020; Eshan Chattopadhyay and Jyun-Jie Liao, 2020]) specify the seed length but not the space complexity, though it is plausible they can also achieve such (or close) space complexity.

Cite as

Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. Error Reduction for Weighted PRGs Against Read Once Branching Programs. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 22:1-22:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.CCC.2021.22,
  author =	{Cohen, Gil and Doron, Dean and Renard, Oren and Sberlo, Ori and Ta-Shma, Amnon},
  title =	{{Error Reduction for Weighted PRGs Against Read Once Branching Programs}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{22:1--22:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.22},
  URN =		{urn:nbn:de:0030-drops-142963},
  doi =		{10.4230/LIPIcs.CCC.2021.22},
  annote =	{Keywords: Pseudorandom generators, Read once branching programs, Space-bounded computation}
}
Document
Extended Abstract
Complexity Measures on the Symmetric Group and Beyond (Extended Abstract)

Authors: Neta Dafni, Yuval Filmus, Noam Lifshitz, Nathan Lindzey, and Marc Vinyals

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We extend the definitions of complexity measures of functions to domains such as the symmetric group. The complexity measures we consider include degree, approximate degree, decision tree complexity, sensitivity, block sensitivity, and a few others. We show that these complexity measures are polynomially related for the symmetric group and for many other domains. To show that all measures but sensitivity are polynomially related, we generalize classical arguments of Nisan and others. To add sensitivity to the mix, we reduce to Huang’s sensitivity theorem using "pseudo-characters", which witness the degree of a function. Using similar ideas, we extend the characterization of Boolean degree 1 functions on the symmetric group due to Ellis, Friedgut and Pilpel to the perfect matching scheme. As another application of our ideas, we simplify the characterization of maximum-size t-intersecting families in the symmetric group and the perfect matching scheme.

Cite as

Neta Dafni, Yuval Filmus, Noam Lifshitz, Nathan Lindzey, and Marc Vinyals. Complexity Measures on the Symmetric Group and Beyond (Extended Abstract). In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 87:1-87:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dafni_et_al:LIPIcs.ITCS.2021.87,
  author =	{Dafni, Neta and Filmus, Yuval and Lifshitz, Noam and Lindzey, Nathan and Vinyals, Marc},
  title =	{{Complexity Measures on the Symmetric Group and Beyond}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{87:1--87:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.87},
  URN =		{urn:nbn:de:0030-drops-136267},
  doi =		{10.4230/LIPIcs.ITCS.2021.87},
  annote =	{Keywords: Computational Complexity Theory, Analysis of Boolean Functions, Complexity Measures, Extremal Combinatorics}
}
Document
Selling Complementary Goods: Dynamics, Efficiency and Revenue

Authors: Moshe Babaioff, Liad Blumrosen, and Noam Nisan

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
We consider a price competition between two sellers of perfect-complement goods. Each seller posts a price for the good it sells, but the demand is determined according to the sum of prices. This is a classic model by Cournot (1838), who showed that in this setting a monopoly that sells both goods is better for the society than two competing sellers. We show that non-trivial pure Nash equilibria always exist in this game. We also quantify Cournot's observation with respect to both the optimal welfare and the monopoly revenue. We then prove a series of mostly negative results regarding the convergence of best response dynamics to equilibria in such games.

Cite as

Moshe Babaioff, Liad Blumrosen, and Noam Nisan. Selling Complementary Goods: Dynamics, Efficiency and Revenue. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 134:1-134:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{babaioff_et_al:LIPIcs.ICALP.2017.134,
  author =	{Babaioff, Moshe and Blumrosen, Liad and Nisan, Noam},
  title =	{{Selling Complementary Goods: Dynamics, Efficiency and Revenue}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{134:1--134:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.134},
  URN =		{urn:nbn:de:0030-drops-74757},
  doi =		{10.4230/LIPIcs.ICALP.2017.134},
  annote =	{Keywords: Complements, Pricing, Networks, Game Theory, Price of Stability}
}
Document
Networks of Complements

Authors: Moshe Babaioff, Liad Blumrosen, and Noam Nisan

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
We consider a network of sellers, each selling a single product, where the graph structure represents pair-wise complementarities between products. We study how the network structure affects revenue and social welfare of equilibria of the pricing game between the sellers. We prove positive and negative results, both of "Price of Anarchy" and of "Price of Stability" type, for special families of graphs (paths, cycles) as well as more general ones (trees, graphs). We describe best-reply dynamics that converge to non-trivial equilibrium in several families of graphs, and we use these dynamics to prove the existence of approximately-efficient equilibria.

Cite as

Moshe Babaioff, Liad Blumrosen, and Noam Nisan. Networks of Complements. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 140:1-140:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{babaioff_et_al:LIPIcs.ICALP.2016.140,
  author =	{Babaioff, Moshe and Blumrosen, Liad and Nisan, Noam},
  title =	{{Networks of Complements}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{140:1--140:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.140},
  URN =		{urn:nbn:de:0030-drops-62849},
  doi =		{10.4230/LIPIcs.ICALP.2016.140},
  annote =	{Keywords: Complements, Pricing, Networks, Game Theory, Price of Stability}
}
Document
Electronic Markets and Auctions (Dagstuhl Seminar 13461)

Authors: Yishay Mansour, Benny Moldovanu, Noam Nisan, and Berthold Vöcking

Published in: Dagstuhl Reports, Volume 3, Issue 11 (2014)


Abstract
The main goal of this workshop was to study topics related to electronic markets and auctions both from the computational perspective and from a game-theoretic and economic one. From the computer science perspective, with the advent of the Internet, there has been a significant amount of work in Algorithmic Game Theory focusing on computational aspects of electronic markets and on algorithmic aspects of mechanism design. Economics have been traditionally interested in markets in general and designing efficient markets mechanisms (such as auctions) in particular. The recent emergence of electronic markets and auctions has only reemphasized the importance of this topic.

Cite as

Yishay Mansour, Benny Moldovanu, Noam Nisan, and Berthold Vöcking. Electronic Markets and Auctions (Dagstuhl Seminar 13461). In Dagstuhl Reports, Volume 3, Issue 11, pp. 58-78, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@Article{mansour_et_al:DagRep.3.11.58,
  author =	{Mansour, Yishay and Moldovanu, Benny and Nisan, Noam and V\"{o}cking, Berthold},
  title =	{{Electronic Markets and Auctions (Dagstuhl Seminar 13461)}},
  pages =	{58--78},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2014},
  volume =	{3},
  number =	{11},
  editor =	{Mansour, Yishay and Moldovanu, Benny and Nisan, Noam and V\"{o}cking, Berthold},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.3.11.58},
  URN =		{urn:nbn:de:0030-drops-44379},
  doi =		{10.4230/DagRep.3.11.58},
  annote =	{Keywords: Algorithmic game theory, mechanism design, economics, electronic markets}
}
Document
Complexity of Boolean Functions (Dagstuhl Seminar 9711)

Authors: David Mix Barrington, Noam Nisan, Rüdiger Reischuk, and Ingo Wegener

Published in: Dagstuhl Seminar Reports. Dagstuhl Seminar Reports, Volume 1 (2021)


Abstract

Cite as

David Mix Barrington, Noam Nisan, Rüdiger Reischuk, and Ingo Wegener. Complexity of Boolean Functions (Dagstuhl Seminar 9711). Dagstuhl Seminar Report 172, pp. 1-26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (1997)


Copy BibTex To Clipboard

@TechReport{barrington_et_al:DagSemRep.172,
  author =	{Barrington, David Mix and Nisan, Noam and Reischuk, R\"{u}diger and Wegener, Ingo},
  title =	{{Complexity of Boolean Functions (Dagstuhl Seminar 9711)}},
  pages =	{1--26},
  ISSN =	{1619-0203},
  year =	{1997},
  type = 	{Dagstuhl Seminar Report},
  number =	{172},
  institution =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemRep.172},
  URN =		{urn:nbn:de:0030-drops-150594},
  doi =		{10.4230/DagSemRep.172},
}
  • Refine by Author
  • 4 Nisan, Noam
  • 2 Babaioff, Moshe
  • 2 Blumrosen, Liad
  • 2 Doron, Dean
  • 1 Balkanski, Eric
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Algebraic complexity theory
  • 2 Theory of computation → Pseudorandomness and derandomization
  • 1 Mathematics of computing → Discrete mathematics
  • 1 Mathematics of computing → Matchings and factors
  • 1 Theory of computation → Algorithmic mechanism design
  • Show More...

  • Refine by Keyword
  • 2 Complements
  • 2 Game Theory
  • 2 Networks
  • 2 Price of Stability
  • 2 Pricing
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 4 2021
  • 1 1997
  • 1 2014
  • 1 2016
  • 1 2017
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail