37 Search Results for "Nishimura, Naomi"


Volume

LIPIcs, Volume 89

12th International Symposium on Parameterized and Exact Computation (IPEC 2017)

IPEC 2017, September 6-8, 2017, Vienna, Austria

Editors: Daniel Lokshtanov and Naomi Nishimura

Document
Minimum Separator Reconfiguration

Authors: Guilherme C. M. Gomes, Clément Legrand-Duchesne, Reem Mahmoud, Amer E. Mouawad, Yoshio Okamoto, Vinicius F. dos Santos, and Tom C. van der Zanden

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
We study the problem of reconfiguring one minimum s-t-separator A into another minimum s-t-separator B in some n-vertex graph G containing two non-adjacent vertices s and t. We consider several variants of the problem as we focus on both the token sliding and token jumping models. Our first contribution is a polynomial-time algorithm that computes (if one exists) a minimum-length sequence of slides transforming A into B. We additionally establish that the existence of a sequence of jumps (which need not be of minimum length) can be decided in polynomial time (by an algorithm that also outputs a witnessing sequence when one exists). In contrast, and somewhat surprisingly, we show that deciding if a sequence of at most 𝓁 jumps can transform A into B is an NP-complete problem. To complement this negative result, we investigate the parameterized complexity of what we believe to be the two most natural parameterized counterparts of the latter problem; in particular, we study the problem of computing a minimum-length sequence of jumps when parameterized by the size k of the minimum s-t-separators and when parameterized by the number 𝓁 of jumps. For the first parameterization, we show that the problem is fixed-parameter tractable, but does not admit a polynomial kernel unless NP ⊆ coNP/poly. We complete the picture by designing a kernel with 𝒪(𝓁²) vertices and edges for the length 𝓁 of the sequence as a parameter.

Cite as

Guilherme C. M. Gomes, Clément Legrand-Duchesne, Reem Mahmoud, Amer E. Mouawad, Yoshio Okamoto, Vinicius F. dos Santos, and Tom C. van der Zanden. Minimum Separator Reconfiguration. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{c.m.gomes_et_al:LIPIcs.IPEC.2023.9,
  author =	{C. M. Gomes, Guilherme and Legrand-Duchesne, Cl\'{e}ment and Mahmoud, Reem and Mouawad, Amer E. and Okamoto, Yoshio and F. dos Santos, Vinicius and C. van der Zanden, Tom},
  title =	{{Minimum Separator Reconfiguration}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{9:1--9:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.9},
  URN =		{urn:nbn:de:0030-drops-194288},
  doi =		{10.4230/LIPIcs.IPEC.2023.9},
  annote =	{Keywords: minimum separators, combinatorial reconfiguration, parameterized complexity, kernelization}
}
Document
Reconfiguration of Graph Minors

Authors: Benjamin Moore, Naomi Nishimura, and Vijay Subramanya

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
Under the reconfiguration framework, we consider the various ways that a target graph H is a minor of a host graph G, where a subgraph of G can be transformed into H by means of edge contraction (replacement of both endpoints of an edge by a new vertex adjacent to any vertex adjacent to either endpoint). Equivalently, an H-model of G is a labeling of the vertices of G with the vertices of H, where the contraction of all edges between identically-labeled vertices results in a graph containing representations of all edges in H. We explore the properties of G and H that result in a connected reconfiguration graph, in which nodes represent H-models and two nodes are adjacent if their corresponding H-models differ by the label of a single vertex of G. Various operations on G or H are shown to preserve connectivity. In addition, we demonstrate properties of graphs G that result in connectivity for the target graphs K_2, K_3, and K_4, including a full characterization of graphs G that result in connectivity for K_2-models, as well as the relationship between connectivity of G and other H-models.

Cite as

Benjamin Moore, Naomi Nishimura, and Vijay Subramanya. Reconfiguration of Graph Minors. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 75:1-75:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{moore_et_al:LIPIcs.MFCS.2018.75,
  author =	{Moore, Benjamin and Nishimura, Naomi and Subramanya, Vijay},
  title =	{{Reconfiguration of Graph Minors}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{75:1--75:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.75},
  URN =		{urn:nbn:de:0030-drops-96573},
  doi =		{10.4230/LIPIcs.MFCS.2018.75},
  annote =	{Keywords: reconfiguration, graph minors, graph algorithms}
}
Document
Complete Volume
LIPIcs, Volume 89, IPEC'17, Complete Volume

Authors: Daniel Lokshtanov and Naomi Nishimura

Published in: LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)


Abstract
LIPIcs, Volume 89, IPEC'17, Complete Volume

Cite as

12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Proceedings{lokshtanov_et_al:LIPIcs.IPEC.2017,
  title =	{{LIPIcs, Volume 89, IPEC'17, Complete Volume}},
  booktitle =	{12th International Symposium on Parameterized and Exact Computation (IPEC 2017)},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-051-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{89},
  editor =	{Lokshtanov, Daniel and Nishimura, Naomi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017},
  URN =		{urn:nbn:de:0030-drops-86166},
  doi =		{10.4230/LIPIcs.IPEC.2017},
  annote =	{Keywords: Complexity Measures and Classes, Analysis of Algorithms and Problem Complexity, Discrete Mathematics}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Daniel Lokshtanov and Naomi Nishimura

Published in: LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 0:i-0:xii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.IPEC.2017.0,
  author =	{Lokshtanov, Daniel and Nishimura, Naomi},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{12th International Symposium on Parameterized and Exact Computation (IPEC 2017)},
  pages =	{0:i--0:xii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-051-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{89},
  editor =	{Lokshtanov, Daniel and Nishimura, Naomi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017.0},
  URN =		{urn:nbn:de:0030-drops-85437},
  doi =		{10.4230/LIPIcs.IPEC.2017.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
On the Parameterized Complexity of Contraction to Generalization of Trees

Authors: Akanksha Agrawal, Saket Saurabh, and Prafullkumar Tale

Published in: LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)


Abstract
For a family of graphs F, the F-Contraction problem takes as an input a graph G and an integer k, and the goal is to decide if there exists S \subseteq E(G) of size at most k such that G/S belongs to F. Here, G/S is the graph obtained from G by contracting all the edges in S. Heggernes et al.[Algorithmica (2014)] were the first to study edge contraction problems in the realm of Parameterized Complexity. They studied \cal F-Contraction when F is a simple family of graphs such as trees and paths. In this paper, we study the F-Contraction problem, where F generalizes the family of trees. In particular, we define this generalization in a "parameterized way". Let T_\ell be the family of graphs such that each graph in T_\ell can be made into a tree by deleting at most \ell edges. Thus, the problem we study is T_\ell-Contraction. We design an FPT algorithm for T_\ell-Contraction running in time O((\ncol)^{O(k + \ell)} * n^{O(1)}). Furthermore, we show that the problem does not admit a polynomial kernel when parameterized by k. Inspired by the negative result for the kernelization, we design a lossy kernel for T_\ell-Contraction of size O([k(k + 2\ell)] ^{(\lceil {\frac{\alpha}{\alpha-1}\rceil + 1)}}).

Cite as

Akanksha Agrawal, Saket Saurabh, and Prafullkumar Tale. On the Parameterized Complexity of Contraction to Generalization of Trees. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 1:1-1:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.IPEC.2017.1,
  author =	{Agrawal, Akanksha and Saurabh, Saket and Tale, Prafullkumar},
  title =	{{On the Parameterized Complexity of Contraction to Generalization of Trees}},
  booktitle =	{12th International Symposium on Parameterized and Exact Computation (IPEC 2017)},
  pages =	{1:1--1:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-051-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{89},
  editor =	{Lokshtanov, Daniel and Nishimura, Naomi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017.1},
  URN =		{urn:nbn:de:0030-drops-85446},
  doi =		{10.4230/LIPIcs.IPEC.2017.1},
  annote =	{Keywords: Graph Contraction, Fixed Parameter Tractability, Graph Algorithms, Generalization of Trees}
}
Document
Finding Small Weight Isomorphisms with Additional Constraints is Fixed-Parameter Tractable

Authors: Vikraman Arvind, Johannes Köbler, Sebastian Kuhnert, and Jacobo Torán

Published in: LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)


Abstract
Lubiw showed that several variants of Graph Isomorphism are NP-complete, where the solutions are required to satisfy certain additional constraints [SICOMP 10, 1981]. One of these, called Isomorphism With Restrictions, is to decide for two given graphs X_1=(V,E_1) and X_2=(V,E_2) and a subset R\subseteq V\times V of forbidden pairs whether there is an isomorphism \pi from X_1 to X_2 such that i^\pi\ne j for all (i,j)\in R. We prove that this problem and several of its generalizations are in fact in \FPT: - The problem of deciding whether there is an isomorphism between two graphs that moves k vertices and satisfies Lubiw-style constraints is in FPT, with k and the size of R as parameters. The problem remains in FPT even if a conjunction of disjunctions of such constraints is allowed. As a consequence of the main result it follows that the problem to decide whether there is an isomorphism that moves exactly k vertices is in FPT. This solves a question left open in our article on exact weight automorphisms [STACS 2017]. - When the number of moved vertices is unrestricted, finding isomorphisms that satisfy a CNF of Lubiw-style constraints can be solved in FPT with access to a GI oracle. - Checking if there is an isomorphism π between two graphs with complexity t is also in FPT with t as parameter, where the complexity of a permutation is the Cayley measure defined as the minimum number t such that \pi can be expressed as a product of t transpositions. - We consider a more general problem in which the vertex set of a graph X is partitioned into Red and Blue, and we are interested in an automorphism that stabilizes Red and Blue and moves exactly k vertices in Blue, where k is the parameter. This problem was introduced by [Downey and Fellows 1999], and we showed [STACS 2017] that it is W[1]-hard even with color classes of size 4 inside Red. Now, for color classes of size at most 3 inside Red, we show the problem is in FPT. In the non-parameterized setting, all these problems are NP-complete. Also, they all generalize in several ways the problem to decide whether there is an isomorphism between two graphs that moves at most k vertices, shown to be in FPT by Schweitzer [ESA 2011].

Cite as

Vikraman Arvind, Johannes Köbler, Sebastian Kuhnert, and Jacobo Torán. Finding Small Weight Isomorphisms with Additional Constraints is Fixed-Parameter Tractable. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 2:1-2:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{arvind_et_al:LIPIcs.IPEC.2017.2,
  author =	{Arvind, Vikraman and K\"{o}bler, Johannes and Kuhnert, Sebastian and Tor\'{a}n, Jacobo},
  title =	{{Finding Small Weight Isomorphisms with Additional Constraints is Fixed-Parameter Tractable}},
  booktitle =	{12th International Symposium on Parameterized and Exact Computation (IPEC 2017)},
  pages =	{2:1--2:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-051-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{89},
  editor =	{Lokshtanov, Daniel and Nishimura, Naomi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017.2},
  URN =		{urn:nbn:de:0030-drops-85690},
  doi =		{10.4230/LIPIcs.IPEC.2017.2},
  annote =	{Keywords: parameterized algorithms, hypergraph isomorphism, mislabeled graphs}
}
Document
Parameterized Complexity of Finding a Spanning Tree with Minimum Reload Cost Diameter

Authors: Julien Baste, Didem Gözüpek, Christophe Paul, Ignasi Sau, Mordechai Shalom, and Dimitrios M. Thilikos

Published in: LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)


Abstract
We study the minimum diameter spanning tree problem under the reload cost model (DIAMETER-TREE for short) introduced by Wirth and Steffan (2001). In this problem, given an undirected edge-colored graph G, reload costs on a path arise at a node where the path uses consecutive edges of different colors. The objective is to find a spanning tree of G of minimum diameter with respect to the reload costs. We initiate a systematic study of the parameterized complexity of the DIAMETER-TREE problem by considering the following parameters: the cost of a solution, and the treewidth and the maximum degree Delta of the input graph. We prove that DIAMETER-TREE is para-np-hard for any combination of two of these three parameters, and that it is FPT parameterized by the three of them. We also prove that the problem can be solved in polynomial time on cactus graphs. This result is somehow surprising since we prove DIAMETER-TREE to be NP-hard on graphs of treewidth two, which is best possible as the problem can be trivially solved on forests. When the reload costs satisfy the triangle inequality, Wirth and Steffan (2001) proved that the problem can be solved in polynomial time on graphs with Delta=3, and Galbiati (2008) proved that it is NP-hard if Delta=4. Our results show, in particular, that without the requirement of the triangle inequality, the problem is NP-hard if Delta=3, which is also best possible. Finally, in the case where the reload costs are polynomially bounded by the size of the input graph, we prove that DIAMETER-TREE is in XP and W[1]-hard parameterized by the treewidth plus Delta.

Cite as

Julien Baste, Didem Gözüpek, Christophe Paul, Ignasi Sau, Mordechai Shalom, and Dimitrios M. Thilikos. Parameterized Complexity of Finding a Spanning Tree with Minimum Reload Cost Diameter. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 3:1-3:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{baste_et_al:LIPIcs.IPEC.2017.3,
  author =	{Baste, Julien and G\"{o}z\"{u}pek, Didem and Paul, Christophe and Sau, Ignasi and Shalom, Mordechai and Thilikos, Dimitrios M.},
  title =	{{Parameterized Complexity of Finding a Spanning Tree with Minimum Reload Cost Diameter}},
  booktitle =	{12th International Symposium on Parameterized and Exact Computation (IPEC 2017)},
  pages =	{3:1--3:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-051-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{89},
  editor =	{Lokshtanov, Daniel and Nishimura, Naomi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017.3},
  URN =		{urn:nbn:de:0030-drops-85545},
  doi =		{10.4230/LIPIcs.IPEC.2017.3},
  annote =	{Keywords: reload cost problems, minimum diameter spanning tree, parameterized complexity, FPT algorithm, treewidth, dynamic programming}
}
Document
Optimal Algorithms for Hitting (Topological) Minors on Graphs of Bounded Treewidth

Authors: Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos

Published in: LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)


Abstract
For a fixed collection of graphs F, the F-M-DELETION problem consists in, given a graph G and an integer k, decide whether there exists a subset S of V(G) of size at most k such that G-S does not contain any of the graphs in F as a minor. We are interested in the parameterized complexity of F-M-DELETION when the parameter is the treewidth of G, denoted by tw. Our objective is to determine, for a fixed F}, the smallest function f_F such that F-M-DELETION can be solved in time f_F(tw)n^{O(1)} on n-vertex graphs. Using and enhancing the machinery of boundaried graphs and small sets of representatives introduced by Bodlaender et al. [J ACM, 2016], we prove that when all the graphs in F are connected and at least one of them is planar, then f_F(w) = 2^{O(wlog w)}. When F is a singleton containing a clique, a cycle, or a path on i vertices, we prove the following asymptotically tight bounds: - f_{K_4}(w) = 2^{Theta(wlog w)}. - f_{C_i}(w) = 2^{Theta(w)} for every i<5, and f_{C_i}(w) = 2^{Theta(wlog w)} for every i>4. - f_{P_i}(w) = 2^{Theta(w)} for every i<5, and f_{P_i}(w) = 2^{Theta(wlog w)} for every i>5. The lower bounds hold unless the Exponential Time Hypothesis fails, and the superexponential ones are inspired by a reduction of Marcin Pilipczuk [Discrete Appl Math, 2016]. The single-exponential algorithms use, in particular, the rank-based approach introduced by Bodlaender et al. [Inform Comput, 2015]. We also consider the version of the problem where the graphs in F are forbidden as topological minors, and prove essentially the same set of results holds.

Cite as

Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Optimal Algorithms for Hitting (Topological) Minors on Graphs of Bounded Treewidth. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 4:1-4:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{baste_et_al:LIPIcs.IPEC.2017.4,
  author =	{Baste, Julien and Sau, Ignasi and Thilikos, Dimitrios M.},
  title =	{{Optimal Algorithms for Hitting (Topological) Minors on Graphs of Bounded Treewidth}},
  booktitle =	{12th International Symposium on Parameterized and Exact Computation (IPEC 2017)},
  pages =	{4:1--4:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-051-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{89},
  editor =	{Lokshtanov, Daniel and Nishimura, Naomi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017.4},
  URN =		{urn:nbn:de:0030-drops-85556},
  doi =		{10.4230/LIPIcs.IPEC.2017.4},
  annote =	{Keywords: parameterized complexity, graph minors, treewidth, hitting minors, topological minors, dynamic programming, Exponential Time Hypothesis}
}
Document
Contraction-Bidimensionality of Geometric Intersection Graphs

Authors: Julien Baste and Dimitrios M. Thilikos

Published in: LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)


Abstract
Given a graph G, we define bcg(G) as the minimum k for which G can be contracted to the uniformly triangulated grid Gamma_k. A graph class G has the SQGC property if every graph G in G has treewidth O(bcg(G)c) for some 1 <= c < 2. The SQGC property is important for algorithm design as it defines the applicability horizon of a series of meta-algorithmic results, in the framework of bidimensionality theory, related to fast parameterized algorithms, kernelization, and approximation schemes. These results apply to a wide family of problems, namely problems that are contraction-bidimensional. Our main combinatorial result reveals a general family of graph classes that satisfy the SQGC property and includes bounded-degree string graphs. This considerably extends the applicability of bidimensionality theory for several intersection graph classes of 2-dimensional geometrical objects.

Cite as

Julien Baste and Dimitrios M. Thilikos. Contraction-Bidimensionality of Geometric Intersection Graphs. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{baste_et_al:LIPIcs.IPEC.2017.5,
  author =	{Baste, Julien and Thilikos, Dimitrios M.},
  title =	{{Contraction-Bidimensionality of Geometric Intersection Graphs}},
  booktitle =	{12th International Symposium on Parameterized and Exact Computation (IPEC 2017)},
  pages =	{5:1--5:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-051-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{89},
  editor =	{Lokshtanov, Daniel and Nishimura, Naomi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017.5},
  URN =		{urn:nbn:de:0030-drops-85487},
  doi =		{10.4230/LIPIcs.IPEC.2017.5},
  annote =	{Keywords: Grid exlusion theorem, Bidimensionality, Geometric intersection graphs, String Graphs}
}
Document
Generalized Kakeya Sets for Polynomial Evaluation and Faster Computation of Fermionants

Authors: Andreas Björklund, Petteri Kaski, and Ryan Williams

Published in: LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)


Abstract
We present two new data structures for computing values of an n-variate polynomial P of degree at most d over a finite field of q elements. Assuming that d divides q-1, our first data structure relies on (d+1)^{n+2} tabulated values of P to produce the value of P at any of the q^n points using O(nqd^2) arithmetic operations in the finite field. Assuming that s divides d and d/s divides q-1, our second data structure assumes that P satisfies a degree-separability condition and relies on (d/s+1)^{n+s} tabulated values to produce the value of P at any point using O(nq^ssq) arithmetic operations. Our data structures are based on generalizing upper-bound constructions due to Mockenhaupt and Tao (2004), Saraf and Sudan (2008), and Dvir (2009) for Kakeya sets in finite vector spaces from linear to higher-degree polynomial curves. As an application we show that the new data structures enable a faster algorithm for computing integer-valued fermionants, a family of self-reducible polynomial functions introduced by Chandrasekharan and Wiese (2011) that captures numerous fundamental algebraic and combinatorial invariants such as the determinant, the permanent, the number of Hamiltonian cycles in a directed multigraph, as well as certain partition functions of strongly correlated electron systems in statistical physics. In particular, a corollary of our main theorem for fermionants is that the permanent of an m-by-m integer matrix with entries bounded in absolute value by a constant can be computed in time 2^{m-Omega(sqrt(m/log log m))}, improving an earlier algorithm of Bjorklund (2016) that runs in time 2^{m-Omega(sqrt(m/log m))}.

Cite as

Andreas Björklund, Petteri Kaski, and Ryan Williams. Generalized Kakeya Sets for Polynomial Evaluation and Faster Computation of Fermionants. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 6:1-6:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.IPEC.2017.6,
  author =	{Bj\"{o}rklund, Andreas and Kaski, Petteri and Williams, Ryan},
  title =	{{Generalized Kakeya Sets for Polynomial Evaluation and Faster Computation of Fermionants}},
  booktitle =	{12th International Symposium on Parameterized and Exact Computation (IPEC 2017)},
  pages =	{6:1--6:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-051-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{89},
  editor =	{Lokshtanov, Daniel and Nishimura, Naomi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017.6},
  URN =		{urn:nbn:de:0030-drops-85728},
  doi =		{10.4230/LIPIcs.IPEC.2017.6},
  annote =	{Keywords: Besicovitch set, fermionant, finite field, finite vector space, Hamiltonian cycle, homogeneous polynomial, Kakeya set, permanent, polynomial evaluatio}
}
Document
Generalized Feedback Vertex Set Problems on Bounded-Treewidth Graphs: Chordality Is the Key to Single-Exponential Parameterized Algorithms

Authors: Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx

Published in: LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)


Abstract
It has long been known that Feedback Vertex Set can be solved in time 2^O(w log w)n^O(1) on graphs of treewidth w, but it was only recently that this running time was improved to 2^O(w)n^O(1), that is, to single-exponential parameterized by treewidth. We investigate which generalizations of Feedback Vertex Set can be solved in a similar running time. Formally, for a class of graphs P, Bounded P-Block Vertex Deletion asks, given a graph G on n vertices and positive integers k and d, whether G contains a set S of at most k vertices such that each block of G-S has at most d vertices and is in P. Assuming that P is recognizable in polynomial time and satisfies a certain natural hereditary condition, we give a sharp characterization of when single-exponential parameterized algorithms are possible for fixed values of d: - if P consists only of chordal graphs, then the problem can be solved in time 2^O(wd^2) n^{O}(1), - if P contains a graph with an induced cycle of length ell>= 4, then the problem is not solvable in time 2^{o(w log w)} n^O(1)} even for fixed d=ell, unless the ETH fails. We also study a similar problem, called Bounded P-Component Vertex Deletion, where the target graphs have connected components of small size instead of having blocks of small size, and present analogous results.

Cite as

Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx. Generalized Feedback Vertex Set Problems on Bounded-Treewidth Graphs: Chordality Is the Key to Single-Exponential Parameterized Algorithms. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 7:1-7:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.IPEC.2017.7,
  author =	{Bonnet, \'{E}douard and Brettell, Nick and Kwon, O-joung and Marx, D\'{a}niel},
  title =	{{Generalized Feedback Vertex Set Problems on Bounded-Treewidth Graphs: Chordality Is the Key to Single-Exponential Parameterized Algorithms}},
  booktitle =	{12th International Symposium on Parameterized and Exact Computation (IPEC 2017)},
  pages =	{7:1--7:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-051-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{89},
  editor =	{Lokshtanov, Daniel and Nishimura, Naomi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017.7},
  URN =		{urn:nbn:de:0030-drops-85653},
  doi =		{10.4230/LIPIcs.IPEC.2017.7},
  annote =	{Keywords: fixed-parameter tractable algorithms, treewidth, feedback vertex set}
}
Document
On the Parameterized Complexity of Red-Blue Points Separation

Authors: Édouard Bonnet, Panos Giannopoulos, and Michael Lampis

Published in: LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)


Abstract
We study the following geometric separation problem: Given a set R of red points and a set B of blue points in the plane, find a minimum-size set of lines that separate R from B. We show that, in its full generality, parameterized by the number of lines k in the solution, the problem is unlikely to be solvable significantly faster than the brute-force n^{O(k)}-time algorithm, where n is the total number of points. Indeed, we show that an algorithm running in time f(k)n^{o(k/log k)}, for any computable function f, would disprove ETH. Our reduction crucially relies on selecting lines from a set with a large number of different slopes (i.e., this number is not a function of k). Conjecturing that the problem variant where the lines are required to be axis-parallel is FPT in the number of lines, we show the following preliminary result. Separating R from B with a minimum-size set of axis-parallel lines is FPT in the size of either set, and can be solved in time O^*(9^{|B|}) (assuming that B is the smallest set).

Cite as

Édouard Bonnet, Panos Giannopoulos, and Michael Lampis. On the Parameterized Complexity of Red-Blue Points Separation. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 8:1-8:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.IPEC.2017.8,
  author =	{Bonnet, \'{E}douard and Giannopoulos, Panos and Lampis, Michael},
  title =	{{On the Parameterized Complexity of Red-Blue Points Separation}},
  booktitle =	{12th International Symposium on Parameterized and Exact Computation (IPEC 2017)},
  pages =	{8:1--8:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-051-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{89},
  editor =	{Lokshtanov, Daniel and Nishimura, Naomi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017.8},
  URN =		{urn:nbn:de:0030-drops-85687},
  doi =		{10.4230/LIPIcs.IPEC.2017.8},
  annote =	{Keywords: red-blue points separation, geometric problem, W\lbrack1\rbrack-hardness, FPT algorithm, ETH-based lower bound}
}
Document
Relativization and Interactive Proof Systems in Parameterized Complexity Theory

Authors: Ralph Bottesch

Published in: LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)


Abstract
We introduce some classical complexity-theoretic techniques to Parameterized Complexity. First, we study relativization for the machine models that were used by Chen, Flum, and Grohe (2005) to characterize a number of parameterized complexity classes. Here we obtain a new and non-trivial characterization of the A-Hierarchy in terms of oracle machines, and parameterize a famous result of Baker, Gill, and Solovay (1975), by proving that, relative to specific oracles, FPT and A[1] can either coincide or differ (a similar statement holds for FPT and W[P]). Second, we initiate the study of interactive proof systems in the parameterized setting, and show that every problem in the class AW[SAT] has a proof system with "short" interactions, in the sense that the number of rounds is upper-bounded in terms of the parameter value alone.

Cite as

Ralph Bottesch. Relativization and Interactive Proof Systems in Parameterized Complexity Theory. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bottesch:LIPIcs.IPEC.2017.9,
  author =	{Bottesch, Ralph},
  title =	{{Relativization and Interactive Proof Systems in Parameterized Complexity Theory}},
  booktitle =	{12th International Symposium on Parameterized and Exact Computation (IPEC 2017)},
  pages =	{9:1--9:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-051-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{89},
  editor =	{Lokshtanov, Daniel and Nishimura, Naomi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017.9},
  URN =		{urn:nbn:de:0030-drops-85715},
  doi =		{10.4230/LIPIcs.IPEC.2017.9},
  annote =	{Keywords: Parameterized complexity, Relativization, Interactive Proof Systems}
}
Document
How Much Does a Treedepth Modulator Help to Obtain Polynomial Kernels Beyond Sparse Graphs?

Authors: Marin Bougeret and Ignasi Sau

Published in: LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)


Abstract
In the last years, kernelization with structural parameters has been an active area of research within the field of parameterized complexity. As a relevant example, Gajarsky et al. [ESA 2013] proved that every graph problem satisfying a property called finite integer index admits a linear kernel on graphs of bounded expansion and an almost linear kernel on nowhere dense graphs, parameterized by the size of a c-treedepth modulator, which is a vertex set whose removal results in a graph of treedepth at most c for a fixed integer c>0. The authors left as further research to investigate this parameter on general graphs, and in particular to find problems that, while admitting polynomial kernels on sparse graphs, behave differently on general graphs. In this article we answer this question by finding two very natural such problems: we prove that VERTEX COVER admits a polynomial kernel on general graphs for any integer c>0, and that DOMINATING SET does not for any integer c>1 even on degenerate graphs, unless NP is a subset of coNP/poly. For the positive result, we build on the techniques of Jansen and Bodlaender [STACS 2011], and for the negative result we use a polynomial parameter transformation for c>2 and an OR-cross-composition for c=2. As existing results imply that DOMINATING SET admits a polynomial kernel on degenerate graphs for c=1, our result provides a dichotomy about the existence of polynomial problems for DOMINATING SET on degenerate graphs with this parameter.

Cite as

Marin Bougeret and Ignasi Sau. How Much Does a Treedepth Modulator Help to Obtain Polynomial Kernels Beyond Sparse Graphs?. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 10:1-10:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bougeret_et_al:LIPIcs.IPEC.2017.10,
  author =	{Bougeret, Marin and Sau, Ignasi},
  title =	{{How Much Does a Treedepth Modulator Help to Obtain Polynomial Kernels Beyond Sparse Graphs?}},
  booktitle =	{12th International Symposium on Parameterized and Exact Computation (IPEC 2017)},
  pages =	{10:1--10:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-051-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{89},
  editor =	{Lokshtanov, Daniel and Nishimura, Naomi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017.10},
  URN =		{urn:nbn:de:0030-drops-85564},
  doi =		{10.4230/LIPIcs.IPEC.2017.10},
  annote =	{Keywords: parameterized complexity, polynomial kernels, structural parameters, treedepth, treewidth, sparse graphs}
}
  • Refine by Author
  • 5 Nishimura, Naomi
  • 3 Baste, Julien
  • 3 Sau, Ignasi
  • 3 Thilikos, Dimitrios M.
  • 2 Bonnet, Édouard
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Graph theory
  • 1 Theory of computation → Parameterized complexity and exact algorithms

  • Refine by Keyword
  • 7 treewidth
  • 6 parameterized complexity
  • 3 dynamic programming
  • 2 Exponential Time Hypothesis
  • 2 FPT algorithm
  • Show More...

  • Refine by Type
  • 36 document
  • 1 volume

  • Refine by Publication Year
  • 34 2018
  • 1 2003
  • 1 2017
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail