5 Search Results for "Niwiński, Damian"


Document
On Guidable Index of Tree Automata

Authors: Damian Niwiński and Michał Skrzypczak

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We study guidable parity automata over infinite trees introduced by Colcombet and Löding, which form an expressively complete subclass of all non-deterministic tree automata. We show that, for any non-deterministic automaton, an equivalent guidable automaton with the smallest possible index can be effectively found. Moreover, if an input automaton is of a special kind, i.e. it is deterministic or game automaton then a guidable automaton with an optimal index can be deterministic (respectively game) automaton as well. Recall that the problem whether an equivalent non-deterministic automaton with the smallest possible index can be effectively found is open, and a positive answer is known only in the case when an input automaton is a deterministic, or more generally, a game automaton.

Cite as

Damian Niwiński and Michał Skrzypczak. On Guidable Index of Tree Automata. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 81:1-81:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{niwinski_et_al:LIPIcs.MFCS.2021.81,
  author =	{Niwi\'{n}ski, Damian and Skrzypczak, Micha{\l}},
  title =	{{On Guidable Index of Tree Automata}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{81:1--81:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.81},
  URN =		{urn:nbn:de:0030-drops-145214},
  doi =		{10.4230/LIPIcs.MFCS.2021.81},
  annote =	{Keywords: guidable automata, index problem, \omega-regular games}
}
Document
A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

Authors: André Arnold, Damian Niwiński, and Paweł Parys

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
We consider nested fixed-point expressions like μ z. ν y. μ x. f(x,y,z) evaluated over a finite lattice, and ask how many queries to a function f are needed to find the value. The previous upper bounds for a monotone function f of arity d over the lattice {0,1}ⁿ were of the order n^{𝒪(d)}, whereas a lower bound of Ω(n²/(lg n)) is known in case when at least one alternation between the least (μ) and the greatest (ν) fixed point occurs in the expression. Following a recent development for parity games, we show here that a quasi-polynomial number of queries is sufficient, namely n^{lg(d/lg n)+𝒪(1)}. The algorithm is an abstract version of several algorithms proposed recently by a number of authors, which involve (implicitly or explicitly) the structure of a universal tree. We then show a quasi-polynomial lower bound for the number of queries used by the algorithms in consideration.

Cite as

André Arnold, Damian Niwiński, and Paweł Parys. A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 9:1-9:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{arnold_et_al:LIPIcs.CSL.2021.9,
  author =	{Arnold, Andr\'{e} and Niwi\'{n}ski, Damian and Parys, Pawe{\l}},
  title =	{{A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{9:1--9:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.9},
  URN =		{urn:nbn:de:0030-drops-134430},
  doi =		{10.4230/LIPIcs.CSL.2021.9},
  annote =	{Keywords: Mu-calculus, Parity games, Quasi-polynomial time, Black-box algorithm}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Computing Measures of Weak-MSO Definable Sets of Trees

Authors: Damian Niwiński, Marcin Przybyłko, and Michał Skrzypczak

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
This work addresses the problem of computing measures of recognisable sets of infinite trees. An algorithm is provided to compute the probability measure of a tree language recognisable by a weak alternating automaton, or equivalently definable in weak monadic second-order logic. The measure is the uniform coin-flipping measure or more generally it is generated by a branching stochastic process. The class of tree languages in consideration, although smaller than all regular tree languages, comprises in particular the languages definable in the alternation-free μ-calculus or in temporal logic CTL. Thus, the new algorithm may enhance the toolbox of probabilistic model checking.

Cite as

Damian Niwiński, Marcin Przybyłko, and Michał Skrzypczak. Computing Measures of Weak-MSO Definable Sets of Trees. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 136:1-136:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{niwinski_et_al:LIPIcs.ICALP.2020.136,
  author =	{Niwi\'{n}ski, Damian and Przyby{\l}ko, Marcin and Skrzypczak, Micha{\l}},
  title =	{{Computing Measures of Weak-MSO Definable Sets of Trees}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{136:1--136:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.136},
  URN =		{urn:nbn:de:0030-drops-125430},
  doi =		{10.4230/LIPIcs.ICALP.2020.136},
  annote =	{Keywords: infinite trees, weak alternating automata, coin-flipping measure}
}
Document
Access Structure in Graphs in High Dimension and Application to Secret Sharing

Authors: Anne Marin, Damian Markham, and Simon Perdrix

Published in: LIPIcs, Volume 22, 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)


Abstract
We give graphical characterisation of the access structure to both classical and quantum information encoded onto a multigraph defined for prime dimension q, as well as explicit decoding operations for quantum secret sharing based on graph state protocols. We give a lower bound on $k$ for the existence of a ((k,n))_q scheme and prove, using probabilistic methods, that there exists alpha such that a random multigraph has an accessing parameter k => alpha*n with high probability.

Cite as

Anne Marin, Damian Markham, and Simon Perdrix. Access Structure in Graphs in High Dimension and Application to Secret Sharing. In 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 22, pp. 308-324, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{marin_et_al:LIPIcs.TQC.2013.308,
  author =	{Marin, Anne and Markham, Damian and Perdrix, Simon},
  title =	{{Access Structure in Graphs in High Dimension and Application to Secret Sharing}},
  booktitle =	{8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)},
  pages =	{308--324},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-55-2},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{22},
  editor =	{Severini, Simone and Brandao, Fernando},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2013.308},
  URN =		{urn:nbn:de:0030-drops-43306},
  doi =		{10.4230/LIPIcs.TQC.2013.308},
  annote =	{Keywords: Quantum Secret Sharing, Graph State, Multigraph, Access structure}
}
Document
The Ackermann Award 2013

Authors: Anuj Dawar, Thomas A. Henzinger, and Damian Niwiński

Published in: LIPIcs, Volume 23, Computer Science Logic 2013 (CSL 2013)


Abstract
Report on the Ackermann Award 2013.

Cite as

Anuj Dawar, Thomas A. Henzinger, and Damian Niwiński. The Ackermann Award 2013. In Computer Science Logic 2013 (CSL 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 23, pp. 1-4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{dawar_et_al:LIPIcs.CSL.2013.1,
  author =	{Dawar, Anuj and Henzinger, Thomas A. and Niwi\'{n}ski, Damian},
  title =	{{The Ackermann Award 2013}},
  booktitle =	{Computer Science Logic 2013 (CSL 2013)},
  pages =	{1--4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-60-6},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{23},
  editor =	{Ronchi Della Rocca, Simona},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2013.1},
  URN =		{urn:nbn:de:0030-drops-41837},
  doi =		{10.4230/LIPIcs.CSL.2013.1},
  annote =	{Keywords: Ackermann award}
}
  • Refine by Author
  • 4 Niwiński, Damian
  • 2 Skrzypczak, Michał
  • 1 Arnold, André
  • 1 Dawar, Anuj
  • 1 Henzinger, Thomas A.
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Automata over infinite objects
  • 1 Mathematics of computing → Markov processes
  • 1 Theory of computation → Logic and verification

  • Refine by Keyword
  • 1 Access structure
  • 1 Ackermann award
  • 1 Black-box algorithm
  • 1 Graph State
  • 1 Mu-calculus
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2013
  • 2 2021
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail