13 Search Results for "Olivetti, Dennis"


Document
Distributed Partial Coloring via Gradual Rounding

Authors: Avinandan Das, Pierre Fraigniaud, and Adi Rosén

Published in: LIPIcs, Volume 286, 27th International Conference on Principles of Distributed Systems (OPODIS 2023)


Abstract
For k ≥ 0, k-partial (k+1)-coloring asks to color the nodes of an n-node graph using a palette of k+1 colors such that every node v has at least min{k,deg(v)} neighbors colored with colors different from its own color. Hence, proper (Δ+1)-coloring is the special case of k-partial (k+1)-coloring when k = Δ. Ghaffari and Kuhn [FOCS 2021] recently proved that there exists a deterministic distributed algorithm that solves proper (Δ+1)-coloring of n-node graphs with maximum degree Δ in O(log n ⋅ log²Δ) rounds under the LOCAL model of distributed computing. This breakthrough result is achieved via an original iterated rounding approach. Using the same technique, Ghaffari and Kuhn also showed that there exists a deterministic algorithm that solves proper O(a)-coloring of n-node graphs with arboricity a in O(log n ⋅ log³a) rounds. It directly follows from this latter result that k-partial O(k)-coloring can be solved deterministically in O(log n ⋅ log³k) rounds. We develop an extension of the Ghaffari and Kuhn algorithm for proper (Δ+1)-coloring, and show that it solves k-partial (k+1)-coloring, thus generalizing their main result. Our algorithm runs in O(log n ⋅ log³k) rounds, like the algorithm that follows from Ghaffari and Kuhn’s algorithm for graphs with bounded arboricity, but uses only k+1 color, i.e., the smallest number c of colors such that every graph has a k-partial c-coloring. Like all the previously mentioned algorithms, our algorithm actually solves the general list-coloring version of the problem. Specifically, every node v receives as input an integer demand d(v) ≤ deg(v), and a list of at least d(v)+1 colors. Every node must then output a color from its list such that the resulting coloring satisfies that every node v has at least d(v) neighbors with colors different from its own. Our algorithm solves this problem in O(log n ⋅ log³k) rounds where k = max_v d(v). Moreover, in the specific case where all lists of colors given to the nodes as input share a common colors c^* known to all nodes, one can save one log k factor. In particular, for standard k-partial (k+1)-coloring, which corresponds to the case where all nodes are given the same list {1,… ,k+1}, one can modify our algorithm so that it runs in O(log n ⋅ log²k) rounds, and thus matches the complexity of Ghaffari and Kuhn’s algorithm for (Δ+1)-coloring for k = Δ.

Cite as

Avinandan Das, Pierre Fraigniaud, and Adi Rosén. Distributed Partial Coloring via Gradual Rounding. In 27th International Conference on Principles of Distributed Systems (OPODIS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 286, pp. 30:1-30:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{das_et_al:LIPIcs.OPODIS.2023.30,
  author =	{Das, Avinandan and Fraigniaud, Pierre and Ros\'{e}n, Adi},
  title =	{{Distributed Partial Coloring via Gradual Rounding}},
  booktitle =	{27th International Conference on Principles of Distributed Systems (OPODIS 2023)},
  pages =	{30:1--30:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-308-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{286},
  editor =	{Bessani, Alysson and D\'{e}fago, Xavier and Nakamura, Junya and Wada, Koichi and Yamauchi, Yukiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2023.30},
  URN =		{urn:nbn:de:0030-drops-195205},
  doi =		{10.4230/LIPIcs.OPODIS.2023.30},
  annote =	{Keywords: Distributed graph coloring, partial coloring, weak coloring}
}
Document
On the Node-Averaged Complexity of Locally Checkable Problems on Trees

Authors: Alkida Balliu, Sebastian Brandt, Fabian Kuhn, Dennis Olivetti, and Gustav Schmid

Published in: LIPIcs, Volume 281, 37th International Symposium on Distributed Computing (DISC 2023)


Abstract
Over the past decade, a long line of research has investigated the distributed complexity landscape of locally checkable labeling (LCL) problems on bounded-degree graphs, culminating in an almost-complete classification on general graphs and a complete classification on trees. The latter states that, on bounded-degree trees, any LCL problem has deterministic worst-case time complexity O(1), Θ(log^* n), Θ(log n), or Θ(n^{1/k}) for some positive integer k, and all of those complexity classes are nonempty. Moreover, randomness helps only for (some) problems with deterministic worst-case complexity Θ(log n), and if randomness helps (asymptotically), then it helps exponentially. In this work, we study how many distributed rounds are needed on average per node in order to solve an LCL problem on trees. We obtain a partial classification of the deterministic node-averaged complexity landscape for LCL problems. As our main result, we show that every problem with worst-case round complexity O(log n) has deterministic node-averaged complexity O(log^* n). We further establish bounds on the node-averaged complexity of problems with worst-case complexity Θ(n^{1/k}): we show that all these problems have node-averaged complexity Ω̃(n^{1 / (2^k - 1)}), and that this lower bound is tight for some problems.

Cite as

Alkida Balliu, Sebastian Brandt, Fabian Kuhn, Dennis Olivetti, and Gustav Schmid. On the Node-Averaged Complexity of Locally Checkable Problems on Trees. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 7:1-7:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.DISC.2023.7,
  author =	{Balliu, Alkida and Brandt, Sebastian and Kuhn, Fabian and Olivetti, Dennis and Schmid, Gustav},
  title =	{{On the Node-Averaged Complexity of Locally Checkable Problems on Trees}},
  booktitle =	{37th International Symposium on Distributed Computing (DISC 2023)},
  pages =	{7:1--7:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-301-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{281},
  editor =	{Oshman, Rotem},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.7},
  URN =		{urn:nbn:de:0030-drops-191330},
  doi =		{10.4230/LIPIcs.DISC.2023.7},
  annote =	{Keywords: distributed graph algorithms, locally checkable labelings, node-averaged complexity, trees}
}
Document
Track A: Algorithms, Complexity and Games
Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

Authors: Amirreza Akbari, Navid Eslami, Henrik Lievonen, Darya Melnyk, Joona Särkijärvi, and Jukka Suomela

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
In this work, we give a unifying view of locality in four settings: distributed algorithms, sequential greedy algorithms, dynamic algorithms, and online algorithms. We introduce a new model of computing, called the online-LOCAL model: the adversary presents the nodes of the input graph one by one, in the same way as in classical online algorithms, but for each node we get to see its radius-T neighborhood before choosing the output. Instead of looking ahead in time, we have the power of looking around in space. We compare the online-LOCAL model with three other models: the LOCAL model of distributed computing, where each node produces its output based on its radius-T neighborhood, the SLOCAL model, which is the sequential counterpart of LOCAL, and the dynamic-LOCAL model, where changes in the dynamic input graph only influence the radius-T neighborhood of the point of change. The SLOCAL and dynamic-LOCAL models are sandwiched between the LOCAL and online-LOCAL models. In general, all four models are distinct, but we study in particular locally checkable labeling problems (LCLs), which is a family of graph problems extensively studied in the context of distributed graph algorithms. We prove that for LCL problems in paths, cycles, and rooted trees, all four models are roughly equivalent: the locality of any LCL problem falls in the same broad class - O(log* n), Θ(log n), or n^Θ(1) - in all four models. In particular, this result enables one to generalize prior lower-bound results from the LOCAL model to all four models, and it also allows one to simulate e.g. dynamic-LOCAL algorithms efficiently in the LOCAL model. We also show that this equivalence does not hold in two-dimensional grids or general bipartite graphs. We provide an online-LOCAL algorithm with locality O(log n) for the 3-coloring problem in bipartite graphs - this is a problem with locality Ω(n^{1/2}) in the LOCAL model and Ω(n^{1/10}) in the SLOCAL model.

Cite as

Amirreza Akbari, Navid Eslami, Henrik Lievonen, Darya Melnyk, Joona Särkijärvi, and Jukka Suomela. Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{akbari_et_al:LIPIcs.ICALP.2023.10,
  author =	{Akbari, Amirreza and Eslami, Navid and Lievonen, Henrik and Melnyk, Darya and S\"{a}rkij\"{a}rvi, Joona and Suomela, Jukka},
  title =	{{Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.10},
  URN =		{urn:nbn:de:0030-drops-180627},
  doi =		{10.4230/LIPIcs.ICALP.2023.10},
  annote =	{Keywords: Online computation, spatial advice, distributed algorithms, computational complexity}
}
Document
When Should You Wait Before Updating? - Toward a Robustness Refinement

Authors: Swan Dubois, Laurent Feuilloley, Franck Petit, and Mikaël Rabie

Published in: LIPIcs, Volume 257, 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)


Abstract
Consider a dynamic network and a given distributed problem. At any point in time, there might exist several solutions that are equally good with respect to the problem specification, but that are different from an algorithmic perspective, because some could be easier to update than others when the network changes. In other words, one would prefer to have a solution that is more robust to topological changes in the network; and in this direction the best scenario would be that the solution remains correct despite the dynamic of the network. In [Arnaud Casteigts et al., 2020], the authors introduced a very strong robustness criterion: they required that for any removal of edges that maintain the network connected, the solution remains valid. They focus on the maximal independent set problem, and their approach consists in characterizing the graphs in which there exists a robust solution (the existential problem), or even stronger, where any solution is robust (the universal problem). As the robustness criteria is very demanding, few graphs have a robust solution, and even fewer are such that all of their solutions are robust. In this paper, we ask the following question: Can we have robustness for a larger class of networks, if we bound the number k of edge removals allowed? To answer this question, we consider three classic problems: maximal independent set, minimal dominating set and maximal matching. For the universal problem, the answers for the three cases are surprisingly different. For minimal dominating set, the class does not depend on the number of edges removed. For maximal matching, removing only one edge defines a robust class related to perfect matchings, but for all other bounds k, the class is the same as for an arbitrary number of edge removals. Finally, for maximal independent set, there is a strict hierarchy of classes: the class for the bound k is strictly larger than the class for bound k+1. For the robustness notion of [Arnaud Casteigts et al., 2020], no characterization of the class for the existential problem is known, only a polynomial-time recognition algorithm. We show that the situation is even worse for bounded k: even for k = 1, it is NP-hard to decide whether a graph has a robust maximal independent set.

Cite as

Swan Dubois, Laurent Feuilloley, Franck Petit, and Mikaël Rabie. When Should You Wait Before Updating? - Toward a Robustness Refinement. In 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 257, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dubois_et_al:LIPIcs.SAND.2023.7,
  author =	{Dubois, Swan and Feuilloley, Laurent and Petit, Franck and Rabie, Mika\"{e}l},
  title =	{{When Should You Wait Before Updating? - Toward a Robustness Refinement}},
  booktitle =	{2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-275-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{257},
  editor =	{Doty, David and Spirakis, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2023.7},
  URN =		{urn:nbn:de:0030-drops-179435},
  doi =		{10.4230/LIPIcs.SAND.2023.7},
  annote =	{Keywords: Robustness, dynamic network, temporal graphs, edge removal, connectivity, footprint, packing/covering problems, maximal independent set, maximal matching, minimum dominating set, perfect matching, NP-hardness}
}
Document
Efficient Classification of Locally Checkable Problems in Regular Trees

Authors: Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studený, and Jukka Suomela

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)


Abstract
We give practical, efficient algorithms that automatically determine the asymptotic distributed round complexity of a given locally checkable graph problem in the [Θ(log n), Θ(n)] region, in two settings. We present one algorithm for unrooted regular trees and another algorithm for rooted regular trees. The algorithms take the description of a locally checkable labeling problem as input, and the running time is polynomial in the size of the problem description. The algorithms decide if the problem is solvable in O(log n) rounds. If not, it is known that the complexity has to be Θ(n^{1/k}) for some k = 1, 2, ..., and in this case the algorithms also output the right value of the exponent k. In rooted trees in the O(log n) case we can then further determine the exact complexity class by using algorithms from prior work; for unrooted trees the more fine-grained classification in the O(log n) region remains an open question.

Cite as

Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studený, and Jukka Suomela. Efficient Classification of Locally Checkable Problems in Regular Trees. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 8:1-8:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.DISC.2022.8,
  author =	{Balliu, Alkida and Brandt, Sebastian and Chang, Yi-Jun and Olivetti, Dennis and Studen\'{y}, Jan and Suomela, Jukka},
  title =	{{Efficient Classification of Locally Checkable Problems in Regular Trees}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{8:1--8:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.8},
  URN =		{urn:nbn:de:0030-drops-171993},
  doi =		{10.4230/LIPIcs.DISC.2022.8},
  annote =	{Keywords: locally checkable labeling, locality, distributed computational complexity}
}
Document
Exponential Speedup over Locality in MPC with Optimal Memory

Authors: Alkida Balliu, Sebastian Brandt, Manuela Fischer, Rustam Latypov, Yannic Maus, Dennis Olivetti, and Jara Uitto

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)


Abstract
Locally Checkable Labeling (LCL) problems are graph problems in which a solution is correct if it satisfies some given constraints in the local neighborhood of each node. Example problems in this class include maximal matching, maximal independent set, and coloring problems. A successful line of research has been studying the complexities of LCL problems on paths/cycles, trees, and general graphs, providing many interesting results for the LOCAL model of distributed computing. In this work, we initiate the study of LCL problems in the low-space Massively Parallel Computation (MPC) model. In particular, on forests, we provide a method that, given the complexity of an LCL problem in the LOCAL model, automatically provides an exponentially faster algorithm for the low-space MPC setting that uses optimal global memory, that is, truly linear. While restricting to forests may seem to weaken the result, we emphasize that all known (conditional) lower bounds for the MPC setting are obtained by lifting lower bounds obtained in the distributed setting in tree-like networks (either forests or high girth graphs), and hence the problems that we study are challenging already on forests. Moreover, the most important technical feature of our algorithms is that they use optimal global memory, that is, memory linear in the number of edges of the graph. In contrast, most of the state-of-the-art algorithms use more than linear global memory. Further, they typically start with a dense graph, sparsify it, and then solve the problem on the residual graph, exploiting the relative increase in global memory. On forests, this is not possible, because the given graph is already as sparse as it can be, and using optimal memory requires new solutions.

Cite as

Alkida Balliu, Sebastian Brandt, Manuela Fischer, Rustam Latypov, Yannic Maus, Dennis Olivetti, and Jara Uitto. Exponential Speedup over Locality in MPC with Optimal Memory. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.DISC.2022.9,
  author =	{Balliu, Alkida and Brandt, Sebastian and Fischer, Manuela and Latypov, Rustam and Maus, Yannic and Olivetti, Dennis and Uitto, Jara},
  title =	{{Exponential Speedup over Locality in MPC with Optimal Memory}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.9},
  URN =		{urn:nbn:de:0030-drops-172003},
  doi =		{10.4230/LIPIcs.DISC.2022.9},
  annote =	{Keywords: Distributed computing, Locally checkable labeling problems, Trees, Massively Parallel Computation, Sublinear memory}
}
Document
Improved Distributed Fractional Coloring Algorithms

Authors: Alkida Balliu, Fabian Kuhn, and Dennis Olivetti

Published in: LIPIcs, Volume 217, 25th International Conference on Principles of Distributed Systems (OPODIS 2021)


Abstract
We prove new bounds on the distributed fractional coloring problem in the LOCAL model. A fractional c-coloring of a graph G = (V,E) is a fractional covering of the nodes of G with independent sets such that each independent set I of G is assigned a fractional value λ_I ∈ [0,1]. The total value of all independent sets of G is at most c, and for each node v ∈ V, the total value of all independent sets containing v is at least 1. Equivalently, fractional c-colorings can also be understood as multicolorings as follows. For some natural numbers p and q such that p/q ≤ c, each node v is assigned a set of at least q colors from {1,…,p} such that adjacent nodes are assigned disjoint sets of colors. The minimum c for which a fractional c-coloring of a graph G exists is called the fractional chromatic number χ_f(G) of G. Recently, [Bousquet, Esperet, and Pirot; SIROCCO '21] showed that for any constant ε > 0, a fractional (Δ+ε)-coloring can be computed in Δ^{O(Δ)} + O(Δ⋅log^* n) rounds. We show that such a coloring can be computed in only O(log² Δ) rounds, without any dependency on n. We further show that in O((log n)/ε) rounds, it is possible to compute a fractional (1+ε)χ_f(G)-coloring, even if the fractional chromatic number χ_f(G) is not known. That is, the fractional coloring problem can be approximated arbitrarily well by an efficient algorithm in the LOCAL model. For the standard coloring problem, it is only known that an O((log n)/(log log n))-approximation can be computed in polylogarithmic time in the LOCAL model. We also show that our distributed fractional coloring approximation algorithm is best possible. We show that in trees, which have fractional chromatic number 2, computing a fractional (2+ε)-coloring requires at least Ω((log n)/ε) rounds. We finally study fractional colorings of regular grids. In [Bousquet, Esperet, and Pirot; SIROCCO '21], it is shown that in regular grids of bounded dimension, a fractional (2+ε)-coloring can be computed in time O(log^* n). We show that such a coloring can even be computed in O(1) rounds in the LOCAL model.

Cite as

Alkida Balliu, Fabian Kuhn, and Dennis Olivetti. Improved Distributed Fractional Coloring Algorithms. In 25th International Conference on Principles of Distributed Systems (OPODIS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 217, pp. 18:1-18:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.OPODIS.2021.18,
  author =	{Balliu, Alkida and Kuhn, Fabian and Olivetti, Dennis},
  title =	{{Improved Distributed Fractional Coloring Algorithms}},
  booktitle =	{25th International Conference on Principles of Distributed Systems (OPODIS 2021)},
  pages =	{18:1--18:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-219-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{217},
  editor =	{Bramas, Quentin and Gramoli, Vincent and Milani, Alessia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2021.18},
  URN =		{urn:nbn:de:0030-drops-157935},
  doi =		{10.4230/LIPIcs.OPODIS.2021.18},
  annote =	{Keywords: distributed graph algorithms, distributed coloring, locality, fractional coloring}
}
Document
Locally Checkable Labelings with Small Messages

Authors: Alkida Balliu, Keren Censor-Hillel, Yannic Maus, Dennis Olivetti, and Jukka Suomela

Published in: LIPIcs, Volume 209, 35th International Symposium on Distributed Computing (DISC 2021)


Abstract
A rich line of work has been addressing the computational complexity of locally checkable labelings (LCLs), illustrating the landscape of possible complexities. In this paper, we study the landscape of LCL complexities under bandwidth restrictions. Our main results are twofold. First, we show that on trees, the CONGEST complexity of an LCL problem is asymptotically equal to its complexity in the LOCAL model. An analog statement for non-LCL problems is known to be false. Second, we show that for general graphs this equivalence does not hold, by providing an LCL problem for which we show that it can be solved in O(log n) rounds in the LOCAL model, but requires Ω̃(n^{1/2}) rounds in the CONGEST model.

Cite as

Alkida Balliu, Keren Censor-Hillel, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Locally Checkable Labelings with Small Messages. In 35th International Symposium on Distributed Computing (DISC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 209, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.DISC.2021.8,
  author =	{Balliu, Alkida and Censor-Hillel, Keren and Maus, Yannic and Olivetti, Dennis and Suomela, Jukka},
  title =	{{Locally Checkable Labelings with Small Messages}},
  booktitle =	{35th International Symposium on Distributed Computing (DISC 2021)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-210-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{209},
  editor =	{Gilbert, Seth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2021.8},
  URN =		{urn:nbn:de:0030-drops-148109},
  doi =		{10.4230/LIPIcs.DISC.2021.8},
  annote =	{Keywords: distributed graph algorithms, CONGEST, locally checkable labelings}
}
Document
Classification of Distributed Binary Labeling Problems

Authors: Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti, and Jukka Suomela

Published in: LIPIcs, Volume 179, 34th International Symposium on Distributed Computing (DISC 2020)


Abstract
We present a complete classification of the deterministic distributed time complexity for a family of graph problems: binary labeling problems in trees. These are locally checkable problems that can be encoded with an alphabet of size two in the edge labeling formalism. Examples of binary labeling problems include sinkless orientation, sinkless and sourceless orientation, 2-vertex coloring, perfect matching, and the task of coloring edges red and blue such that all nodes are incident to at least one red and at least one blue edge. More generally, we can encode e.g. any cardinality constraints on indegrees and outdegrees. We study the deterministic time complexity of solving a given binary labeling problem in trees, in the usual LOCAL model of distributed computing. We show that the complexity of any such problem is in one of the following classes: O(1), Θ(log n), Θ(n), or unsolvable. In particular, a problem that can be represented in the binary labeling formalism cannot have time complexity Θ(log^* n), and hence we know that e.g. any encoding of maximal matchings has to use at least three labels (which is tight). Furthermore, given the description of any binary labeling problem, we can easily determine in which of the four classes it is and what is an asymptotically optimal algorithm for solving it. Hence the distributed time complexity of binary labeling problems is decidable, not only in principle, but also in practice: there is a simple and efficient algorithm that takes the description of a binary labeling problem and outputs its distributed time complexity.

Cite as

Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Classification of Distributed Binary Labeling Problems. In 34th International Symposium on Distributed Computing (DISC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 179, pp. 17:1-17:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.DISC.2020.17,
  author =	{Balliu, Alkida and Brandt, Sebastian and Efron, Yuval and Hirvonen, Juho and Maus, Yannic and Olivetti, Dennis and Suomela, Jukka},
  title =	{{Classification of Distributed Binary Labeling Problems}},
  booktitle =	{34th International Symposium on Distributed Computing (DISC 2020)},
  pages =	{17:1--17:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-168-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{179},
  editor =	{Attiya, Hagit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2020.17},
  URN =		{urn:nbn:de:0030-drops-130957},
  doi =		{10.4230/LIPIcs.DISC.2020.17},
  annote =	{Keywords: LOCAL model, graph problems, locally checkable labeling problems, distributed computational complexity}
}
Document
Track C: Foundations of Networks and Multi-Agent Systems: Models, Algorithms and Information Management
Distributed Reconfiguration of Maximal Independent Sets

Authors: Keren Censor-Hillel and Mikaël Rabie

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
In this paper, we investigate a distributed maximal independent set (MIS) reconfiguration problem, in which there are two maximal independent sets for which every node is given its membership status, and the nodes need to communicate with their neighbors in order to find a reconfiguration schedule that switches from the first MIS to the second. Such a schedule is a list of independent sets that is restricted by forbidding two neighbors to change their membership status at the same step. In addition, these independent sets should provide some covering guarantee. We show that obtaining an actual MIS (and even a 3-dominating set) in each intermediate step is impossible. However, we provide efficient solutions when the intermediate sets are only required to be independent and 4-dominating, which is almost always possible, as we fully characterize. Consequently, our goal is to pin down the tradeoff between the possible length of the schedule and the number of communication rounds. We prove that a constant length schedule can be found in O(MIS+R32) rounds, where MIS is the complexity of finding an MIS in a worst-case graph and R32 is the complexity of finding a (3,2)-ruling set. For bounded degree graphs, this is O(log^*n) rounds and we show that it is necessary. On the other extreme, we show that with a constant number of rounds we can find a linear length schedule.

Cite as

Keren Censor-Hillel and Mikaël Rabie. Distributed Reconfiguration of Maximal Independent Sets. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 135:1-135:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{censorhillel_et_al:LIPIcs.ICALP.2019.135,
  author =	{Censor-Hillel, Keren and Rabie, Mika\"{e}l},
  title =	{{Distributed Reconfiguration of Maximal Independent Sets}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{135:1--135:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.135},
  URN =		{urn:nbn:de:0030-drops-107111},
  doi =		{10.4230/LIPIcs.ICALP.2019.135},
  annote =	{Keywords: distributed graph algorithms, reconfiguration, maximal independent set}
}
Document
Almost Global Problems in the LOCAL Model

Authors: Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela

Published in: LIPIcs, Volume 121, 32nd International Symposium on Distributed Computing (DISC 2018)


Abstract
The landscape of the distributed time complexity is nowadays well-understood for subpolynomial complexities. When we look at deterministic algorithms in the LOCAL model and locally checkable problems (LCLs) in bounded-degree graphs, the following picture emerges: - There are lots of problems with time complexities Theta(log^* n) or Theta(log n). - It is not possible to have a problem with complexity between omega(log^* n) and o(log n). - In general graphs, we can construct LCL problems with infinitely many complexities between omega(log n) and n^{o(1)}. - In trees, problems with such complexities do not exist. However, the high end of the complexity spectrum was left open by prior work. In general graphs there are problems with complexities of the form Theta(n^alpha) for any rational 0 < alpha <=1/2, while for trees only complexities of the form Theta(n^{1/k}) are known. No LCL problem with complexity between omega(sqrt{n}) and o(n) is known, and neither are there results that would show that such problems do not exist. We show that: - In general graphs, we can construct LCL problems with infinitely many complexities between omega(sqrt{n}) and o(n). - In trees, problems with such complexities do not exist. Put otherwise, we show that any LCL with a complexity o(n) can be solved in time O(sqrt{n}) in trees, while the same is not true in general graphs.

Cite as

Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. Almost Global Problems in the LOCAL Model. In 32nd International Symposium on Distributed Computing (DISC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 121, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.DISC.2018.9,
  author =	{Balliu, Alkida and Brandt, Sebastian and Olivetti, Dennis and Suomela, Jukka},
  title =	{{Almost Global Problems in the LOCAL Model}},
  booktitle =	{32nd International Symposium on Distributed Computing (DISC 2018)},
  pages =	{9:1--9:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-092-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{121},
  editor =	{Schmid, Ulrich and Widder, Josef},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2018.9},
  URN =		{urn:nbn:de:0030-drops-97982},
  doi =		{10.4230/LIPIcs.DISC.2018.9},
  annote =	{Keywords: Distributed complexity theory, locally checkable labellings, LOCAL model}
}
Document
Three Notes on Distributed Property Testing

Authors: Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapaport, and Ioan Todinca

Published in: LIPIcs, Volume 91, 31st International Symposium on Distributed Computing (DISC 2017)


Abstract
In this paper we present distributed property-testing algorithms for graph properties in the CONGEST model, with emphasis on testing subgraph-freeness. Testing a graph property P means distinguishing graphs G = (V,E) having property P from graphs that are epsilon-far from having it, meaning that epsilon|E| edges must be added or removed from G to obtain a graph satisfying P. We present a series of results, including: - Testing H-freeness in O(1/epsilon) rounds, for any constant-sized graph H containing an edge (u,v) such that any cycle in H contain either u or v (or both). This includes all connected graphs over five vertices except K_5. For triangles, we can do even better when epsilon is not too small. - A deterministic CONGEST protocol determining whether a graph contains a given tree as a subgraph in constant time. - For cliques K_s with s >= 5, we show that K_s-freeness can be tested in O(m^(1/2-1/(s-2)) epsilon^(-1/2-1/(s-2))) rounds, where m is the number of edges in the network graph. - We describe a general procedure for converting epsilon-testers with f(D) rounds, where D denotes the diameter of the graph, to work in O((log n)/epsilon)+f((log n)/epsilon) rounds, where n is the number of processors of the network. We then apply this procedure to obtain an epsilon-tester for testing whether a graph is bipartite and testing whether a graph is cycle-free. Moreover, for cycle-freeness, we obtain a corrector of the graph that locally corrects the graph so that the corrected graph is acyclic. Note that, unlike a tester, a corrector needs to mend the graph in many places in the case that the graph is far from having the property. These protocols extend and improve previous results of [Censor-Hillel et al. 2016] and [Fraigniaud et al. 2016].

Cite as

Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapaport, and Ioan Todinca. Three Notes on Distributed Property Testing. In 31st International Symposium on Distributed Computing (DISC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 91, pp. 15:1-15:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{even_et_al:LIPIcs.DISC.2017.15,
  author =	{Even, Guy and Fischer, Orr and Fraigniaud, Pierre and Gonen, Tzlil and Levi, Reut and Medina, Moti and Montealegre, Pedro and Olivetti, Dennis and Oshman, Rotem and Rapaport, Ivan and Todinca, Ioan},
  title =	{{Three Notes on Distributed Property Testing}},
  booktitle =	{31st International Symposium on Distributed Computing (DISC 2017)},
  pages =	{15:1--15:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-053-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{91},
  editor =	{Richa, Andr\'{e}a},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2017.15},
  URN =		{urn:nbn:de:0030-drops-79847},
  doi =		{10.4230/LIPIcs.DISC.2017.15},
  annote =	{Keywords: Property testing, Property correcting, Distributed algorithms, CONGEST model}
}
Document
What Can Be Verified Locally?

Authors: Alkida Balliu, Gianlorenzo D'Angelo, Pierre Fraigniaud, and Dennis Olivetti

Published in: LIPIcs, Volume 66, 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)


Abstract
We are considering distributed network computing, in which computing entities are connected by a network modeled as a connected graph. These entities are located at the nodes of the graph, and they exchange information by message-passing along its edges. In this context, we are adopting the classical framework for local distributed decision, in which nodes must collectively decide whether their network configuration satisfies some given boolean predicate, by having each node interacting with the nodes in its vicinity only. A network configuration is accepted if and only if every node individually accepts. It is folklore that not every Turing-decidable network property (e.g., whether the network is planar) can be decided locally whenever the computing entities are Turing machines (TM). On the other hand, it is known that every Turing-decidable network property can be decided locally if nodes are running non-deterministic Turing machines (NTM). However, this holds only if the nodes have the ability to guess the identities of the nodes currently in the network. That is, for different sets of identities assigned to the nodes, the correct guesses of the nodes might be different. If one asks the nodes to use the same guess in the same network configuration even with different identity assignments, i.e., to perform identity-oblivious guesses, then it is known that not every Turing-decidable network property can be decided locally. In this paper, we show that every Turing-decidable network property can be decided locally if nodes are running alternating Turing machines (ATM), and this holds even if nodes are bounded to perform identity-oblivious guesses. More specifically, we show that, for every network property, there is a local algorithm for ATMs, with at most 2 alternations, that decides that property. To this aim, we define a hierarchy of classes of decision tasks where the lowest level contains tasks solvable with TMs, the first level those solvable with NTMs, and level k contains those tasks solvable with ATMs with k alternations. We characterize the entire hierarchy, and show that it collapses in the second level. In addition, we show separation results between the classes of network properties that are locally decidable with TMs, NTMs, and ATMs. Finally, we establish the existence of completeness results for each of these classes, using novel notions of local reduction.

Cite as

Alkida Balliu, Gianlorenzo D'Angelo, Pierre Fraigniaud, and Dennis Olivetti. What Can Be Verified Locally?. In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 66, pp. 8:1-8:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.STACS.2017.8,
  author =	{Balliu, Alkida and D'Angelo, Gianlorenzo and Fraigniaud, Pierre and Olivetti, Dennis},
  title =	{{What Can Be Verified Locally?}},
  booktitle =	{34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)},
  pages =	{8:1--8:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-028-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{66},
  editor =	{Vollmer, Heribert and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2017.8},
  URN =		{urn:nbn:de:0030-drops-70253},
  doi =		{10.4230/LIPIcs.STACS.2017.8},
  annote =	{Keywords: Distributed Network Computing, Distributed Algorithm, Distributed Decision, Locality}
}
  • Refine by Author
  • 9 Olivetti, Dennis
  • 8 Balliu, Alkida
  • 5 Brandt, Sebastian
  • 5 Suomela, Jukka
  • 3 Fraigniaud, Pierre
  • Show More...

  • Refine by Classification
  • 7 Theory of computation → Distributed algorithms
  • 2 Theory of computation → Complexity classes
  • 2 Theory of computation → Distributed computing models
  • 1 Computing methodologies → Distributed algorithms
  • 1 Mathematics of computing → Discrete mathematics
  • Show More...

  • Refine by Keyword
  • 4 distributed graph algorithms
  • 2 LOCAL model
  • 2 distributed computational complexity
  • 2 locality
  • 2 locally checkable labelings
  • Show More...

  • Refine by Type
  • 13 document

  • Refine by Publication Year
  • 3 2022
  • 3 2023
  • 2 2017
  • 1 2018
  • 1 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail