2783 Search Results for "P�lv�lgyi, D�m�t�r"


Volume

LIPIcs, Volume 148

14th International Symposium on Parameterized and Exact Computation (IPEC 2019)

IPEC 2019, September 11-13, 2019, Munich, Germany

Editors: Bart M. P. Jansen and Jan Arne Telle

Volume

LIPIcs, Volume 116

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)

APPROX/RANDOM 2018, August 20-22, 2018, Princeton, NJ, USA

Editors: Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer

Volume

LIPIcs, Volume 81

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)

APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA

Editors: Klaus Jansen, José D. P. Rolim, David P. Williamson, and Santosh S. Vempala

Volume

LIPIcs, Volume 60

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)

APPROX/RANDOM 2016, September 7-9, 2016, Paris, France

Editors: Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans

Volume

LIPIcs, Volume 40

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)

APPROX/RANDOM 2015, August 24-26, 2015, Princeton, USA

Editors: Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim

Document
The Futures of Reactive Synthesis (Dagstuhl Seminar 23391)

Authors: Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, Elizabeth Polgreen, and Rémi Morvan

Published in: Dagstuhl Reports, Volume 13, Issue 9 (2024)


Abstract
The Dagstuhl Seminar 23391 "The Futures of Reactive Synthesis" held in September 2023 was meant to gather neighbouring communities on a joint goal: Reactive Synthesis. We identified five trends: neural-symbolic computation, template-based solving for constraint programming, symbolic algorithms, syntax-guided synthesis, and model learning; and the objective was to discuss the potential futures of the field.

Cite as

Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, Elizabeth Polgreen, and Rémi Morvan. The Futures of Reactive Synthesis (Dagstuhl Seminar 23391). In Dagstuhl Reports, Volume 13, Issue 9, pp. 166-184, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{fijalkow_et_al:DagRep.13.9.166,
  author =	{Fijalkow, Nathana\"{e}l and Finkbeiner, Bernd and P\'{e}rez, Guillermo A. and Polgreen, Elizabeth and Morvan, R\'{e}mi},
  title =	{{The Futures of Reactive Synthesis (Dagstuhl Seminar 23391)}},
  pages =	{166--184},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{9},
  editor =	{Fijalkow, Nathana\"{e}l and Finkbeiner, Bernd and P\'{e}rez, Guillermo A. and Polgreen, Elizabeth and Morvan, R\'{e}mi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.9.166},
  URN =		{urn:nbn:de:0030-drops-198259},
  doi =		{10.4230/DagRep.13.9.166},
  annote =	{Keywords: program synthesis, program verification, reactive synthesis, temporal synthesis}
}
Document
Invited Talk
Rule-Based Ontologies: From Semantics to Syntax (Invited Talk)

Authors: Andreas Pieris

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
An ontology specifies an abstract model of a domain of interest via a formal language that is typically based on logic. Tuple-generating dependencies (tgds) and equality-generating dependencies (egds) originally introduced as a unifying framework for database integrity constraints, and later on used in data exchange and integration, are well suited for modeling ontologies that are intended for data-intensive tasks. The reason is that, unlike other popular formalisms such as description logics, tgds and egds can easily handle higher-arity relations that naturally occur in relational databases. In recent years, there has been an extensive study of tgd- and egd-based ontologies and of their applications to several different data-intensive tasks. In those studies, model theory plays a crucial role and it typically proceeds from syntax to semantics. In other words, the syntax of an ontology language is introduced first and then the properties of the mathematical structures that satisfy ontologies of that language are explored. There is, however, a mature and growing body of research in the reverse direction, i.e., from semantics to syntax. Here, the starting point is a collection of model-theoretic properties and the goal is to determine whether or not these properties characterize some ontology language. Such results are welcome as they pinpoint the expressive power of an ontology language in terms of insightful model-theoretic properties. The main aim of this tutorial is to present a comprehensive overview of model-theoretic characterizations of tgd- and egd-based ontology languages that are encountered in database theory and symbolic artificial intelligence.

Cite as

Andreas Pieris. Rule-Based Ontologies: From Semantics to Syntax (Invited Talk). In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, p. 3:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{pieris:LIPIcs.ICDT.2024.3,
  author =	{Pieris, Andreas},
  title =	{{Rule-Based Ontologies: From Semantics to Syntax}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.3},
  URN =		{urn:nbn:de:0030-drops-197857},
  doi =		{10.4230/LIPIcs.ICDT.2024.3},
  annote =	{Keywords: ontologies, tuple-generating dependencies, equality-generating dependencies, model theory, model-theoretic characterizations}
}
Document
Range Entropy Queries and Partitioning

Authors: Sanjay Krishnan and Stavros Sintos

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
Data partitioning that maximizes or minimizes Shannon entropy is a crucial subroutine in data compression, columnar storage, and cardinality estimation algorithms. These partition algorithms can be accelerated if we have a data structure to find the entropy in different subsets of data when the algorithm needs to decide what block to construct. While it is generally known how to compute the entropy of a discrete distribution efficiently, we want to efficiently derive the entropy among the data items that lie in a specific area. We solve this problem in a typical setting when we deal with real data, where data items are geometric points and each requested area is a query (hyper)rectangle. More specifically, we consider a set P of n weighted and colored points in ℝ^d. The goal is to construct a low space data structure, such that given a query (hyper)rectangle R, it computes the entropy based on the colors of the points in P∩ R, in sublinear time. We show a conditional lower bound for this problem proving that we cannot hope for data structures with near-linear space and near-constant query time. Then, we propose exact data structures for d = 1 and d > 1 with o(n^{2d}) space and o(n) query time. We also provide a tune parameter t that the user can choose to bound the asymptotic space and query time of the new data structures. Next, we propose near linear space data structures for returning either an additive or a multiplicative approximation of the entropy. Finally, we show how we can use the new data structures to efficiently partition time series and histograms with respect to entropy.

Cite as

Sanjay Krishnan and Stavros Sintos. Range Entropy Queries and Partitioning. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 6:1-6:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{krishnan_et_al:LIPIcs.ICDT.2024.6,
  author =	{Krishnan, Sanjay and Sintos, Stavros},
  title =	{{Range Entropy Queries and Partitioning}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{6:1--6:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.6},
  URN =		{urn:nbn:de:0030-drops-197883},
  doi =		{10.4230/LIPIcs.ICDT.2024.6},
  annote =	{Keywords: Shannon entropy, range query, data structure, data partitioning}
}
Document
On the Convergence Rate of Linear Datalog ^∘ over Stable Semirings

Authors: Sungjin Im, Benjamin Moseley, Hung Ngo, and Kirk Pruhs

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
Datalog^∘ is an extension of Datalog, where instead of a program being a collection of union of conjunctive queries over the standard Boolean semiring, a program may now be a collection of sum-product queries over an arbitrary commutative partially ordered pre-semiring. Datalog^∘ is more powerful than Datalog in that its additional algebraic structure alows for supporting recursion with aggregation. At the same time, Datalog^∘ retains the syntactic and semantic simplicity of Datalog: Datalog^∘ has declarative least fixpoint semantics. The least fixpoint can be found via the naïve evaluation algorithm that repeatedly applies the immediate consequence operator until no further change is possible. It was shown in [Mahmoud Abo Khamis et al., 2022] that, when the underlying semiring is p-stable, then the naïve evaluation of any Datalog^∘ program over the semiring converges in a finite number of steps. However, the upper bounds on the rate of convergence were exponential in the number n of ground IDB atoms. This paper establishes polynomial upper bounds on the convergence rate of the naïve algorithm on linear Datalog^∘ programs, which is quite common in practice. In particular, the main result of this paper is that the convergence rate of linear Datalog^∘ programs under any p-stable semiring is O(pn³). Furthermore, we show a matching lower bound by constructing a p-stable semiring and a linear Datalog^∘ program that requires Ω(pn³) iterations for the naïve iteration algorithm to converge. Next, we study the convergence rate in terms of the number of elements in the semiring for linear Datalog^∘ programs. When L is the number of elements, the convergence rate is bounded by O(pn log L). This significantly improves the convergence rate for small L. We show a nearly matching lower bound as well.

Cite as

Sungjin Im, Benjamin Moseley, Hung Ngo, and Kirk Pruhs. On the Convergence Rate of Linear Datalog ^∘ over Stable Semirings. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{im_et_al:LIPIcs.ICDT.2024.11,
  author =	{Im, Sungjin and Moseley, Benjamin and Ngo, Hung and Pruhs, Kirk},
  title =	{{On the Convergence Rate of Linear Datalog ^∘ over Stable Semirings}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.11},
  URN =		{urn:nbn:de:0030-drops-197939},
  doi =		{10.4230/LIPIcs.ICDT.2024.11},
  annote =	{Keywords: Datalog, convergence rate, semiring}
}
Document
Direct Access for Conjunctive Queries with Negations

Authors: Florent Capelli and Oliver Irwin

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
Given a conjunctive query Q and a database 𝐃, a direct access to the answers of Q over 𝐃 is the operation of returning, given an index j, the j-th answer for some order on its answers. While this problem is #P-hard in general with respect to combined complexity, many conjunctive queries have an underlying structure that allows for a direct access to their answers for some lexicographical ordering that takes polylogarithmic time in the size of the database after a polynomial time precomputation. Previous work has precisely characterised the tractable classes and given fine-grained lower bounds on the precomputation time needed depending on the structure of the query. In this paper, we generalise these tractability results to the case of signed conjunctive queries, that is, conjunctive queries that may contain negative atoms. Our technique is based on a class of circuits that can represent relational data. We first show that this class supports tractable direct access after a polynomial time preprocessing. We then give bounds on the size of the circuit needed to represent the answer set of signed conjunctive queries depending on their structure. Both results combined together allow us to prove the tractability of direct access for a large class of conjunctive queries. On the one hand, we recover the known tractable classes from the literature in the case of positive conjunctive queries. On the other hand, we generalise and unify known tractability results about negative conjunctive queries - that is, queries having only negated atoms. In particular, we show that the class of β-acyclic negative conjunctive queries and the class of bounded nest set width negative conjunctive queries admit tractable direct access.

Cite as

Florent Capelli and Oliver Irwin. Direct Access for Conjunctive Queries with Negations. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 13:1-13:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{capelli_et_al:LIPIcs.ICDT.2024.13,
  author =	{Capelli, Florent and Irwin, Oliver},
  title =	{{Direct Access for Conjunctive Queries with Negations}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{13:1--13:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.13},
  URN =		{urn:nbn:de:0030-drops-197958},
  doi =		{10.4230/LIPIcs.ICDT.2024.13},
  annote =	{Keywords: Conjunctive queries, factorized databases, direct access, hypertree decomposition}
}
Document
Containment of Regular Path Queries Under Path Constraints

Authors: Sylvain Salvati and Sophie Tison

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
Data integrity is ensured by expressing constraints it should satisfy. One can also view constraints as data properties and take advantage of them for several tasks such as reasoning about data or accelerating query processing. In the context of graph databases, simple constraints can be expressed by means of path constraints while simple queries are modeled as regular path queries (RPQs). In this paper, we investigate the containment of RPQs under path constraints. We focus on word constraints that can be viewed as tuple-generating dependencies (TGDs) of the form ∀x_1,x_2, ∃y⁻, a_1(x_1,y_1) ∧ ... ∧ a_i(y_{i-1},y_i) ∧ ... ∧ a_n(y_{n-1},x_2) ⟶ ∃z⁻, b_1(x_1,z_1) ∧ ... ∧ b_i(z_{i-1},z_i) ∧ ... ∧ b_m(z_{m-1},x_2). Such a constraint means that whenever two nodes in a graph are connected by a path labeled a_1 … a_n, there is also a path labeled b_1 … b_m that connects them. Rewrite systems offer an abstract view of these TGDs: the rewrite rule a_1 … a_n → b_1 … b_m represents the previous constraint. A set of constraints 𝒞 is then represented by a rewrite system R and, when dealing with possibly infinite databases, a path query p is contained in a path query q under the constraints 𝒞 iff p rewrites to q with R. Contrary to what has been claimed in the literature we show that, when restricting to finite databases only, there are cases where a path query p is contained in a path query q under the constraints 𝒞 while p does not rewrite to q with R. More generally, we study the finite controllability of the containment of RPQs under word constraints, that is when this containment problem on unrestricted databases does coincide with the finite case. We give an exact characterisation of the cases where this equivalence holds. We then deduce the undecidability of the containment problem in the finite case even when RPQs are restricted to word queries. We prove several properties related to finite controllability, and in particular that it is undecidable. We also exhibit some classes of word constraints that ensure the finite controllability and the decidability of the containment problem.

Cite as

Sylvain Salvati and Sophie Tison. Containment of Regular Path Queries Under Path Constraints. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 17:1-17:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{salvati_et_al:LIPIcs.ICDT.2024.17,
  author =	{Salvati, Sylvain and Tison, Sophie},
  title =	{{Containment of Regular Path Queries Under Path Constraints}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{17:1--17:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.17},
  URN =		{urn:nbn:de:0030-drops-197994},
  doi =		{10.4230/LIPIcs.ICDT.2024.17},
  annote =	{Keywords: Graph databases, rational path queries, query containment, TGDs, word constraints, rewrite systems, finite controllability, decision problems}
}
Document
Computing Data Distribution from Query Selectivities

Authors: Pankaj K. Agarwal, Rahul Raychaudhury, Stavros Sintos, and Jun Yang

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
We are given a set 𝒵 = {(R_1,s_1), …, (R_n,s_n)}, where each R_i is a range in ℝ^d, such as rectangle or ball, and s_i ∈ [0,1] denotes its selectivity. The goal is to compute a small-size discrete data distribution 𝒟 = {(q₁,w₁),…, (q_m,w_m)}, where q_j ∈ ℝ^d and w_j ∈ [0,1] for each 1 ≤ j ≤ m, and ∑_{1≤j≤m} w_j = 1, such that 𝒟 is the most consistent with 𝒵, i.e., err_p(𝒟,𝒵) = 1/n ∑_{i = 1}ⁿ |s_i - ∑_{j=1}^m w_j⋅1(q_j ∈ R_i)|^p is minimized. In a database setting, 𝒵 corresponds to a workload of range queries over some table, together with their observed selectivities (i.e., fraction of tuples returned), and 𝒟 can be used as compact model for approximating the data distribution within the table without accessing the underlying contents. In this paper, we obtain both upper and lower bounds for this problem. In particular, we show that the problem of finding the best data distribution from selectivity queries is NP-complete. On the positive side, we describe a Monte Carlo algorithm that constructs, in time O((n+δ^{-d}) δ^{-2} polylog n), a discrete distribution 𝒟̃ of size O(δ^{-2}), such that err_p(𝒟̃,𝒵) ≤ min_𝒟 err_p(𝒟,𝒵)+δ (for p = 1,2,∞) where the minimum is taken over all discrete distributions. We also establish conditional lower bounds, which strongly indicate the infeasibility of relative approximations as well as removal of the exponential dependency on the dimension for additive approximations. This suggests that significant improvements to our algorithm are unlikely.

Cite as

Pankaj K. Agarwal, Rahul Raychaudhury, Stavros Sintos, and Jun Yang. Computing Data Distribution from Query Selectivities. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.ICDT.2024.18,
  author =	{Agarwal, Pankaj K. and Raychaudhury, Rahul and Sintos, Stavros and Yang, Jun},
  title =	{{Computing Data Distribution from Query Selectivities}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{18:1--18:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.18},
  URN =		{urn:nbn:de:0030-drops-198007},
  doi =		{10.4230/LIPIcs.ICDT.2024.18},
  annote =	{Keywords: selectivity queries, discrete distributions, Multiplicative Weights Update, eps-approximation, learnable functions, depth problem, arrangement}
}
Document
Join Sampling Under Acyclic Degree Constraints and (Cyclic) Subgraph Sampling

Authors: Ru Wang and Yufei Tao

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
Given a (natural) join with an acyclic set of degree constraints (the join itself does not need to be acyclic), we show how to draw a uniformly random sample from the join result in O(polymat/max{1, OUT}) expected time (assuming data complexity) after a preprocessing phase of O(IN) expected time, where IN, OUT, and polymat are the join’s input size, output size, and polymatroid bound, respectively. This compares favorably with the state of the art (Deng et al. and Kim et al., both in PODS'23), which states that, in the absence of degree constraints, a uniformly random sample can be drawn in Õ(AGM/max{1, OUT}) expected time after a preprocessing phase of Õ(IN) expected time, where AGM is the join’s AGM bound and Õ(.) hides a polylog(IN) factor. Our algorithm applies to every join supported by the solutions of Deng et al. and Kim et al. Furthermore, since the polymatroid bound is at most the AGM bound, our performance guarantees are never worse, but can be considerably better, than those of Deng et al. and Kim et al. We then utilize our techniques to tackle directed subgraph sampling, a problem that has extensive database applications and bears close relevance to joins. Let G = (V, E) be a directed data graph where each vertex has an out-degree at most λ, and let P be a directed pattern graph with a constant number of vertices. The objective is to uniformly sample an occurrence of P in G. The problem can be modeled as join sampling with input size IN = Θ(|E|) but, whenever P contains cycles, the converted join has cyclic degree constraints. We show that it is always possible to throw away certain degree constraints such that (i) the remaining constraints are acyclic and (ii) the new join has asymptotically the same polymatroid bound polymat as the old one. Combining this finding with our new join sampling solution yields an algorithm to sample from the original (cyclic) join (thereby yielding a uniformly random occurrence of P) in O(polymat/max{1, OUT}) expected time after O(|E|) expected-time preprocessing, where OUT is the number of occurrences.

Cite as

Ru Wang and Yufei Tao. Join Sampling Under Acyclic Degree Constraints and (Cyclic) Subgraph Sampling. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 23:1-23:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{wang_et_al:LIPIcs.ICDT.2024.23,
  author =	{Wang, Ru and Tao, Yufei},
  title =	{{Join Sampling Under Acyclic Degree Constraints and (Cyclic) Subgraph Sampling}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{23:1--23:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.23},
  URN =		{urn:nbn:de:0030-drops-198054},
  doi =		{10.4230/LIPIcs.ICDT.2024.23},
  annote =	{Keywords: Join Sampling, Subgraph Sampling, Degree Constraints, Polymatroid Bounds}
}
Document
Finding Smallest Witnesses for Conjunctive Queries

Authors: Xiao Hu and Stavros Sintos

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
A witness is a sub-database that preserves the query results of the original database but of much smaller size. It has wide applications in query rewriting and debugging, query explanation, IoT analytics, multi-layer network routing, etc. In this paper, we study the smallest witness problem (SWP) for the class of conjunctive queries (CQs) without self-joins. We first establish the dichotomy that SWP for a CQ can be computed in polynomial time if and only if it has head-cluster property, unless P = NP. We next turn to the approximated version by relaxing the size of a witness from being minimum. We surprisingly find that the head-domination property - that has been identified for the deletion propagation problem [Kimelfeld et al., 2012] - can also precisely capture the hardness of the approximated smallest witness problem. In polynomial time, SWP for any CQ with head-domination property can be approximated within a constant factor, while SWP for any CQ without such a property cannot be approximated within a logarithmic factor, unless P = NP. We further explore efficient approximation algorithms for CQs without head-domination property: (1) we show a trivial algorithm which achieves a polynomially large approximation ratio for general CQs; (2) for any CQ with only one non-output attribute, such as star CQs, we show a greedy algorithm with a logarithmic approximation ratio; (3) for line CQs, which contain at least two non-output attributes, we relate SWP problem to the directed steiner forest problem, whose algorithms can be applied to line CQs directly. Meanwhile, we establish a much higher lower bound, exponentially larger than the logarithmic lower bound obtained above. It remains open to close the gap between the lower and upper bound of the approximated SWP for CQs without head-domination property.

Cite as

Xiao Hu and Stavros Sintos. Finding Smallest Witnesses for Conjunctive Queries. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 24:1-24:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hu_et_al:LIPIcs.ICDT.2024.24,
  author =	{Hu, Xiao and Sintos, Stavros},
  title =	{{Finding Smallest Witnesses for Conjunctive Queries}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{24:1--24:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.24},
  URN =		{urn:nbn:de:0030-drops-198066},
  doi =		{10.4230/LIPIcs.ICDT.2024.24},
  annote =	{Keywords: conjunctive query, smallest witness, head-cluster, head-domination}
}
Document
Invited Talk
Polynomial-Time Pseudodeterministic Constructions (Invited Talk)

Authors: Igor C. Oliveira

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
A randomised algorithm for a search problem is pseudodeterministic if it produces a fixed canonical solution to the search problem with high probability. In their seminal work on the topic, Gat and Goldwasser (2011) posed as their main open problem whether prime numbers can be pseudodeterministically constructed in polynomial time. We provide a positive solution to this question in the infinitely-often regime. In more detail, we give an unconditional polynomial-time randomised algorithm B such that, for infinitely many values of n, B(1ⁿ) outputs a canonical n-bit prime p_n with high probability. More generally, we prove that for every dense property Q of strings that can be decided in polynomial time, there is an infinitely-often pseudodeterministic polynomial-time construction of strings satisfying Q. This improves upon a subexponential-time pseudodeterministic construction of Oliveira and Santhanam (2017). This talk will cover the main ideas behind these constructions and discuss their implications, such as the existence of infinitely many primes with succinct and efficient representations.

Cite as

Igor C. Oliveira. Polynomial-Time Pseudodeterministic Constructions (Invited Talk). In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, p. 1:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{oliveira:LIPIcs.STACS.2024.1,
  author =	{Oliveira, Igor C.},
  title =	{{Polynomial-Time Pseudodeterministic Constructions}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.1},
  URN =		{urn:nbn:de:0030-drops-197112},
  doi =		{10.4230/LIPIcs.STACS.2024.1},
  annote =	{Keywords: Pseudorandomness, Explicit Constructions, Pseudodeterministic Algorithms}
}
  • Refine by Author
  • 46 Woodruff, David P.
  • 32 Jansen, Bart M. P.
  • 30 Pissis, Solon P.
  • 25 Fekete, Sándor P.
  • 23 Saurabh, Saket
  • Show More...

  • Refine by Classification
  • 144 Theory of computation → Computational geometry
  • 128 Theory of computation → Design and analysis of algorithms
  • 95 Theory of computation → Problems, reductions and completeness
  • 75 Theory of computation → Graph algorithms analysis
  • 74 Theory of computation → Parameterized complexity and exact algorithms
  • Show More...

  • Refine by Keyword
  • 53 approximation algorithms
  • 40 Approximation Algorithms
  • 34 lower bounds
  • 32 complexity
  • 30 parameterized complexity
  • Show More...

  • Refine by Type
  • 2778 document
  • 5 volume

  • Refine by Publication Year
  • 380 2022
  • 312 2019
  • 271 2018
  • 265 2023
  • 247 2017
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail