36 Search Results for "Pagli, Linda"


Volume

LIPIcs, Volume 100

9th International Conference on Fun with Algorithms (FUN 2018)

FUN 2018, June 13-15, 2018, La Maddalena, Italy

Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe

Document
Complete Volume
LIPIcs, Volume 100, FUN'18, Complete Volume

Authors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
LIPIcs, Volume 100, FUN'18, Complete Volume

Cite as

9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Proceedings{ito_et_al:LIPIcs.FUN.2018,
  title =	{{LIPIcs, Volume 100, FUN'18, Complete Volume}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018},
  URN =		{urn:nbn:de:0030-drops-89311},
  doi =		{10.4230/LIPIcs.FUN.2018},
  annote =	{Keywords: Theory of computation, Complexity classes, Algorithm design techniques, Computability, Approximation algorithms analysis, Mathematics of computing}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 0:i-0:xi, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{ito_et_al:LIPIcs.FUN.2018.0,
  author =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  pages =	{0:i--0:xi},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.0},
  URN =		{urn:nbn:de:0030-drops-87914},
  doi =		{10.4230/LIPIcs.FUN.2018.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Paper
Mind the Gap (Invited Paper)

Authors: Martín Farach-Colton

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
As a New Yorker, I'm painfully aware of space. There is, after all, nothing more luxurious than empty space! So when it comes to algorithms, I'm all in favor of leaving holes in my data structures. In this talk, I'll explore the advantages of pampering algorithms with some much needed breathing room.

Cite as

Martín Farach-Colton. Mind the Gap (Invited Paper). In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, p. 1:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{farachcolton:LIPIcs.FUN.2018.1,
  author =	{Farach-Colton, Mart{\'\i}n},
  title =	{{Mind the Gap}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.1},
  URN =		{urn:nbn:de:0030-drops-87924},
  doi =		{10.4230/LIPIcs.FUN.2018.1},
  annote =	{Keywords: library sort, Italian island, packed memory arrays, weight balanced trees, Italians know how to throw a conference}
}
Document
Invited Paper
Evolution of Impossible Objects (Invited Paper)

Authors: Kokichi Sugihara

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
Impossible objects - 3D objects that can create a visual effect that seems impossible - can be classified by generation based on the order in which they were discovered or produced. The first generation consists of objects whose appearance when observed from a certain viewpoint matches a picture of an impossible object. Many such objects can be created, as there are multiple 3D objects that will project the same two-dimensional picture, including shapes that the human vision system is unable to perceive. The gap between the mathematical and the psychological can also create other types of "impossible" visual effects. Impossible objects are here classified into seven groups.

Cite as

Kokichi Sugihara. Evolution of Impossible Objects (Invited Paper). In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 2:1-2:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{sugihara:LIPIcs.FUN.2018.2,
  author =	{Sugihara, Kokichi},
  title =	{{Evolution of Impossible Objects}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  pages =	{2:1--2:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.2},
  URN =		{urn:nbn:de:0030-drops-87939},
  doi =		{10.4230/LIPIcs.FUN.2018.2},
  annote =	{Keywords: Ambiguous cylinder, anomalous picture, impossible motion, impossible object, optical illusion}
}
Document
Who witnesses The Witness? Finding witnesses in The Witness is hard and sometimes impossible

Authors: Zachary Abel, Jeffrey Bosboom, Erik D. Demaine, Linus Hamilton, Adam Hesterberg, Justin Kopinsky, Jayson Lynch, and Mikhail Rudoy

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
We analyze the computational complexity of the many types of pencil-and-paper-style puzzles featured in the 2016 puzzle video game The Witness. In all puzzles, the goal is to draw a path in a rectangular grid graph from a start vertex to a destination vertex. The different puzzle types place different constraints on the path: preventing some edges from being visited (broken edges); forcing some edges or vertices to be visited (hexagons); forcing some cells to have certain numbers of incident path edges (triangles); or forcing the regions formed by the path to be partially monochromatic (squares), have exactly two special cells (stars), or be singly covered by given shapes (polyominoes) and/or negatively counting shapes (antipolyominoes). We show that any one of these clue types (except the first) is enough to make path finding NP-complete ("witnesses exist but are hard to find"), even for rectangular boards. Furthermore, we show that a final clue type (antibody), which necessarily "cancels" the effect of another clue in the same region, makes path finding Sigma_2-complete ("witnesses do not exist"), even with a single antibody (combined with many anti/polyominoes), and the problem gets no harder with many antibodies.

Cite as

Zachary Abel, Jeffrey Bosboom, Erik D. Demaine, Linus Hamilton, Adam Hesterberg, Justin Kopinsky, Jayson Lynch, and Mikhail Rudoy. Who witnesses The Witness? Finding witnesses in The Witness is hard and sometimes impossible. In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 3:1-3:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{abel_et_al:LIPIcs.FUN.2018.3,
  author =	{Abel, Zachary and Bosboom, Jeffrey and Demaine, Erik D. and Hamilton, Linus and Hesterberg, Adam and Kopinsky, Justin and Lynch, Jayson and Rudoy, Mikhail},
  title =	{{Who witnesses The Witness? Finding witnesses in The Witness is hard and sometimes impossible}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  pages =	{3:1--3:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.3},
  URN =		{urn:nbn:de:0030-drops-87944},
  doi =		{10.4230/LIPIcs.FUN.2018.3},
  annote =	{Keywords: video games, puzzles, hardness}
}
Document
Tracks from hell - when finding a proof may be easier than checking it

Authors: Matteo Almanza, Stefano Leucci, and Alessandro Panconesi

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
We consider the popular smartphone game Trainyard: a puzzle game that requires the player to lay down tracks in order to route colored trains from departure stations to suitable arrival stations. While it is already known [Almanza et al., FUN 2016] that the problem of finding a solution to a given Trainyard instance (i.e., game level) is NP-hard, determining the computational complexity of checking whether a candidate solution (i.e., a track layout) solves the level was left as an open problem. In this paper we prove that this verification problem is PSPACE-complete, thus implying that Trainyard players might not only have a hard time finding solutions to a given level, but they might even be unable to efficiently recognize them.

Cite as

Matteo Almanza, Stefano Leucci, and Alessandro Panconesi. Tracks from hell - when finding a proof may be easier than checking it. In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 4:1-4:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{almanza_et_al:LIPIcs.FUN.2018.4,
  author =	{Almanza, Matteo and Leucci, Stefano and Panconesi, Alessandro},
  title =	{{Tracks from hell - when finding a proof may be easier than checking it}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  pages =	{4:1--4:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.4},
  URN =		{urn:nbn:de:0030-drops-87954},
  doi =		{10.4230/LIPIcs.FUN.2018.4},
  annote =	{Keywords: puzzle games, solitaire games, Trainyard, verification}
}
Document
How Bad is the Freedom to Flood-It?

Authors: Rémy Belmonte, Mehdi Khosravian Ghadikolaei, Masashi Kiyomi, Michael Lampis, and Yota Otachi

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
Fixed-Flood-It and Free-Flood-It are combinatorial problems on graphs that generalize a very popular puzzle called Flood-It. Both problems consist of recoloring moves whose goal is to produce a monochromatic ("flooded") graph as quickly as possible. Their difference is that in Free-Flood-It the player has the additional freedom of choosing the vertex to play in each move. In this paper, we investigate how this freedom affects the complexity of the problem. It turns out that the freedom is bad in some sense. We show that some cases trivially solvable for Fixed-Flood-It become intractable for Free-Flood-It. We also show that some tractable cases for Fixed-Flood-It are still tractable for Free-Flood-It but need considerably more involved arguments. We finally present some combinatorial properties connecting or separating the two problems. In particular, we show that the length of an optimal solution for Fixed-Flood-It is always at most twice that of Free-Flood-It, and this is tight.

Cite as

Rémy Belmonte, Mehdi Khosravian Ghadikolaei, Masashi Kiyomi, Michael Lampis, and Yota Otachi. How Bad is the Freedom to Flood-It?. In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{belmonte_et_al:LIPIcs.FUN.2018.5,
  author =	{Belmonte, R\'{e}my and Khosravian Ghadikolaei, Mehdi and Kiyomi, Masashi and Lampis, Michael and Otachi, Yota},
  title =	{{How Bad is the Freedom to Flood-It?}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  pages =	{5:1--5:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.5},
  URN =		{urn:nbn:de:0030-drops-87961},
  doi =		{10.4230/LIPIcs.FUN.2018.5},
  annote =	{Keywords: flood-filling game, parameterized complexity}
}
Document
How long does it take for all users in a social network to choose their communities?

Authors: Jean-Claude Bermond, Augustin Chaintreau, Guillaume Ducoffe, and Dorian Mazauric

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
We consider a community formation problem in social networks, where the users are either friends or enemies. The users are partitioned into conflict-free groups (i.e., independent sets in the conflict graph G^- =(V,E) that represents the enmities between users). The dynamics goes on as long as there exists any set of at most k users, k being any fixed parameter, that can change their current groups in the partition simultaneously, in such a way that they all strictly increase their utilities (number of friends i.e., the cardinality of their respective groups minus one). Previously, the best-known upper-bounds on the maximum time of convergence were O(|V|alpha(G^-)) for k <= 2 and O(|V|^3) for k=3, with alpha(G^-) being the independence number of G^-. Our first contribution in this paper consists in reinterpreting the initial problem as the study of a dominance ordering over the vectors of integer partitions. With this approach, we obtain for k <= 2 the tight upper-bound O(|V| min {alpha(G^-), sqrt{|V|}}) and, when G^- is the empty graph, the exact value of order ((2|V|)^{3/2})/3. The time of convergence, for any fixed k >= 4, was conjectured to be polynomial [Escoffier et al., 2012][Kleinberg and Ligett, 2013]. In this paper we disprove this. Specifically, we prove that for any k >= 4, the maximum time of convergence is an Omega(|V|^{Theta(log{|V|})}).

Cite as

Jean-Claude Bermond, Augustin Chaintreau, Guillaume Ducoffe, and Dorian Mazauric. How long does it take for all users in a social network to choose their communities?. In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 6:1-6:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bermond_et_al:LIPIcs.FUN.2018.6,
  author =	{Bermond, Jean-Claude and Chaintreau, Augustin and Ducoffe, Guillaume and Mazauric, Dorian},
  title =	{{How long does it take for all users in a social network to choose their communities?}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  pages =	{6:1--6:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.6},
  URN =		{urn:nbn:de:0030-drops-87972},
  doi =		{10.4230/LIPIcs.FUN.2018.6},
  annote =	{Keywords: communities, social networks, integer partitions, coloring games, graphs}
}
Document
On the Complexity of Two Dots for Narrow Boards and Few Colors

Authors: Davide Bilò, Luciano Gualà, Stefano Leucci, and Neeldhara Misra

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
Two Dots is a popular single-player puzzle video game for iOS and Android. A level of this game consists of a grid of colored dots. The player connects two or more adjacent dots, removing them from the grid and causing the remaining dots to fall, as if influenced by gravity. One special move, which is frequently a game-changer, consists of connecting a cycle of dots: this removes all the dots of the given color from the grid. The goal is to remove a certain number of dots of each color using a limited number of moves. The computational complexity of Two Dots has already been addressed in [Misra, FUN 2016], where it has been shown that the general version of the problem is NP-complete. Unfortunately, the known reductions produce Two Dots levels having both a large number of colors and many columns. This does not completely match the spirit of the game, where, on the one hand, only few colors are allowed, and on the other hand, the grid of the game has only a constant number of columns. In this paper, we partially fill this gap by assessing the computational complexity of Two Dots instances having a small number of colors or columns. More precisely, we show that Two Dots is hard even for instances involving only 3 colors or 2 columns. As a contrast, we also prove that the problem can be solved in polynomial-time on single-column instances with a constant number of goals.

Cite as

Davide Bilò, Luciano Gualà, Stefano Leucci, and Neeldhara Misra. On the Complexity of Two Dots for Narrow Boards and Few Colors. In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bilo_et_al:LIPIcs.FUN.2018.7,
  author =	{Bil\`{o}, Davide and Gual\`{a}, Luciano and Leucci, Stefano and Misra, Neeldhara},
  title =	{{On the Complexity of Two Dots for Narrow Boards and Few Colors}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.7},
  URN =		{urn:nbn:de:0030-drops-87988},
  doi =		{10.4230/LIPIcs.FUN.2018.7},
  annote =	{Keywords: puzzle, NP-complete, perfect information, combinatorial game theory}
}
Document
On the PSPACE-completeness of Peg Duotaire and other Peg-Jumping Games

Authors: Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti, and Mirko Rossi

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
Peg Duotaire is a two-player version of the classical puzzle called Peg Solitaire. Players take turns making peg-jumping moves, and the first player which is left without available moves loses the game. Peg Duotaire has been studied from a combinatorial point of view and two versions of the game have been considered, namely the single- and the multi-hop variant. On the other hand, understanding the computational complexity of the game is explicitly mentioned as an open problem in the literature. We close this problem and prove that both versions of the game are PSPACE-complete. We also prove the PSPACE-completeness of other peg-jumping games where two players control pegs of different colors.

Cite as

Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti, and Mirko Rossi. On the PSPACE-completeness of Peg Duotaire and other Peg-Jumping Games. In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 8:1-8:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bilo_et_al:LIPIcs.FUN.2018.8,
  author =	{Bil\`{o}, Davide and Gual\`{a}, Luciano and Leucci, Stefano and Proietti, Guido and Rossi, Mirko},
  title =	{{On the PSPACE-completeness of Peg Duotaire and other Peg-Jumping Games}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  pages =	{8:1--8:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.8},
  URN =		{urn:nbn:de:0030-drops-87994},
  doi =		{10.4230/LIPIcs.FUN.2018.8},
  annote =	{Keywords: peg duotaire, pspace-completeness, peg solitaire, two-player games}
}
Document
On the Exact Complexity of Polyomino Packing

Authors: Hans L. Bodlaender and Tom C. van der Zanden

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
We show that the problem of deciding whether a collection of polyominoes, each fitting in a 2 x O(log n) rectangle, can be packed into a 3 x n box does not admit a 2^{o(n/log{n})}-time algorithm, unless the Exponential Time Hypothesis fails. We also give an algorithm that attains this lower bound, solving any instance of polyomino packing with total area n in 2^{O(n/log{n})} time. This establishes a tight bound on the complexity of Polyomino Packing, even in a very restricted case. In contrast, for a 2 x n box, we show that the problem can be solved in strongly subexponential time.

Cite as

Hans L. Bodlaender and Tom C. van der Zanden. On the Exact Complexity of Polyomino Packing. In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 9:1-9:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bodlaender_et_al:LIPIcs.FUN.2018.9,
  author =	{Bodlaender, Hans L. and van der Zanden, Tom C.},
  title =	{{On the Exact Complexity of Polyomino Packing}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  pages =	{9:1--9:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.9},
  URN =		{urn:nbn:de:0030-drops-88001},
  doi =		{10.4230/LIPIcs.FUN.2018.9},
  annote =	{Keywords: polyomino packing, exact complexity, exponential time hypothesis}
}
Document
Kings, Name Days, Lazy Servants and Magic

Authors: Paolo Boldi and Sebastiano Vigna

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
Once upon a time, a king had a very, very long list of names of his subjects. The king was also a bit obsessed with name days: every day he would ask his servants to look the list for all persons having their name day. Reading every day the whole list was taking an enormous amount of time to the king's servants. One day, the chancellor had a magnificent idea: he wrote a book with instructions. The number of pages in the book was equal to the number of names, but following the instructions one could find all people having their name day by looking at only a few pages - in fact, as many pages as the length of the name - and just glimpsing at the list. Everybody was happy, but in time the king's servants got lazy: when the name was very long they would find excuses to avoid looking at so many pages, and some name days were skipped. Desperate, the king made a call through its reign, and a fat sorceress answered. There was a way to look at much, much fewer pages using an additional magic book. But sometimes, very rarely, it would not work (magic does not always work). The king accepted the offer, and name days parties restarted. Only, once every a few thousand years, the magic book fails, and the assistants have to go by the chancellor book. So the parties start a bit later. But they start anyway.

Cite as

Paolo Boldi and Sebastiano Vigna. Kings, Name Days, Lazy Servants and Magic. In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 10:1-10:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{boldi_et_al:LIPIcs.FUN.2018.10,
  author =	{Boldi, Paolo and Vigna, Sebastiano},
  title =	{{Kings, Name Days, Lazy Servants and Magic}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  pages =	{10:1--10:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.10},
  URN =		{urn:nbn:de:0030-drops-88017},
  doi =		{10.4230/LIPIcs.FUN.2018.10},
  annote =	{Keywords: Suffix trees, suffix arrays, z-fast tries, prefix search}
}
Document
Computational Complexity of Generalized Push Fight

Authors: Jeffrey Bosboom, Erik D. Demaine, and Mikhail Rudoy

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
We analyze the computational complexity of optimally playing the two-player board game Push Fight, generalized to an arbitrary board and number of pieces. We prove that the game is PSPACE-hard to decide who will win from a given position, even for simple (almost rectangular) hole-free boards. We also analyze the mate-in-1 problem: can the player win in a single turn? One turn in Push Fight consists of up to two "moves" followed by a mandatory "push". With these rules, or generalizing the number of allowed moves to any constant, we show mate-in-1 can be solved in polynomial time. If, however, the number of moves per turn is part of the input, the problem becomes NP-complete. On the other hand, without any limit on the number of moves per turn, the problem becomes polynomially solvable again.

Cite as

Jeffrey Bosboom, Erik D. Demaine, and Mikhail Rudoy. Computational Complexity of Generalized Push Fight. In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 11:1-11:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bosboom_et_al:LIPIcs.FUN.2018.11,
  author =	{Bosboom, Jeffrey and Demaine, Erik D. and Rudoy, Mikhail},
  title =	{{Computational Complexity of Generalized Push Fight}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  pages =	{11:1--11:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.11},
  URN =		{urn:nbn:de:0030-drops-88029},
  doi =		{10.4230/LIPIcs.FUN.2018.11},
  annote =	{Keywords: board games, hardness, mate-in-one}
}
Document
SUPERSET: A (Super)Natural Variant of the Card Game SET

Authors: Fábio Botler, Andrés Cristi, Ruben Hoeksma, Kevin Schewior, and Andreas Tönnis

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
We consider Superset, a lesser-known yet interesting variant of the famous card game Set. Here, players look for Supersets instead of Sets, that is, the symmetric difference of two Sets that intersect in exactly one card. In this paper, we pose questions that have been previously posed for Set and provide answers to them; we also show relations between Set and Superset. For the regular Set deck, which can be identified with F^3_4, we give a proof for the fact that the maximum number of cards that can be on the table without having a Superset is 9. This solves an open question posed by McMahon et al. in 2016. For the deck corresponding to F^3_d, we show that this number is Omega(1.442^d) and O(1.733^d). We also compute probabilities of the presence of a superset in a collection of cards drawn uniformly at random. Finally, we consider the computational complexity of deciding whether a multi-value version of Set or Superset is contained in a given set of cards, and show an FPT-reduction from the problem for Set to that for Superset, implying W[1]-hardness of the problem for Superset.

Cite as

Fábio Botler, Andrés Cristi, Ruben Hoeksma, Kevin Schewior, and Andreas Tönnis. SUPERSET: A (Super)Natural Variant of the Card Game SET. In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{botler_et_al:LIPIcs.FUN.2018.12,
  author =	{Botler, F\'{a}bio and Cristi, Andr\'{e}s and Hoeksma, Ruben and Schewior, Kevin and T\"{o}nnis, Andreas},
  title =	{{SUPERSET: A (Super)Natural Variant of the Card Game SET}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.12},
  URN =		{urn:nbn:de:0030-drops-88035},
  doi =		{10.4230/LIPIcs.FUN.2018.12},
  annote =	{Keywords: SET, SUPERSET, card game, cap set, affine geometry, computational complexity}
}
  • Refine by Author
  • 4 Demaine, Erik D.
  • 4 Lynch, Jayson
  • 3 Leucci, Stefano
  • 3 Pagli, Linda
  • 3 Rudoy, Mikhail
  • Show More...

  • Refine by Classification
  • 13 Theory of computation → Problems, reductions and completeness
  • 2 Mathematics of computing → Combinatoric problems
  • 2 Theory of computation → Design and analysis of algorithms
  • 2 Theory of computation → Parameterized complexity and exact algorithms
  • 1 Applied computing → Computer-aided design
  • Show More...

  • Refine by Keyword
  • 4 computational complexity
  • 4 hardness
  • 3 video games
  • 2 NP-complete
  • 2 PSPACE
  • Show More...

  • Refine by Type
  • 35 document
  • 1 volume

  • Refine by Publication Year
  • 35 2018
  • 1 2016

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail