14 Search Results for "Peressotti, Marco"


Volume

OASIcs, Volume 78

Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)

Microservices 2017/2019, February 19-21, 2019, University of Applied Sciences and Arts Dortmund, Germany

Editors: Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and Sabine Sachweh

Document
Modular Choreographies: Bridging Alice and Bob Notation to Java

Authors: Luís Cruz-Filipe, Anne Madsen, Fabrizio Montesi, and Marco Peressotti

Published in: OASIcs, Volume 111, Joint Post-proceedings of the Third and Fourth International Conference on Microservices (Microservices 2020/2022)


Abstract
We present Modular Choreographies, a new choreographic programming language that features modular functions. Modular Choreographies is aimed at simplicity: its communication abstraction follows the simple tradition from the "Alice and Bob" notation. We develop a compiler toolchain that translates choreographies into modular Java libraries, which developers can use to participate correctly in choreographies. The key novelty is to compile through the Choral language, which was previously proposed to define object-oriented choreographies: our toolchain compiles Modular Choreographies to Choral, and then leverages the existing Choral compiler to generate Java code. Our work is the first to bridge the simplicity of traditional choreographic programming languages with the requirement of generating modular libraries in a mainstream language (Java).

Cite as

Luís Cruz-Filipe, Anne Madsen, Fabrizio Montesi, and Marco Peressotti. Modular Choreographies: Bridging Alice and Bob Notation to Java. In Joint Post-proceedings of the Third and Fourth International Conference on Microservices (Microservices 2020/2022). Open Access Series in Informatics (OASIcs), Volume 111, pp. 3:1-3:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cruzfilipe_et_al:OASIcs.Microservices.2020-2022.3,
  author =	{Cruz-Filipe, Lu{\'\i}s and Madsen, Anne and Montesi, Fabrizio and Peressotti, Marco},
  title =	{{Modular Choreographies: Bridging Alice and Bob Notation to Java}},
  booktitle =	{Joint Post-proceedings of the Third and Fourth International Conference on Microservices (Microservices 2020/2022)},
  pages =	{3:1--3:18},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-306-5},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{111},
  editor =	{Dorai, Gokila and Gabbrielli, Maurizio and Manzonetto, Giulio and Osmani, Aomar and Prandini, Marco and Zavattaro, Gianluigi and Zimmermann, Olaf},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.Microservices.2020-2022.3},
  URN =		{urn:nbn:de:0030-drops-194650},
  doi =		{10.4230/OASIcs.Microservices.2020-2022.3},
  annote =	{Keywords: Choreographic Programming, Choreographies, Modularity}
}
Document
Model-Driven Code Generation for Microservices: Service Models

Authors: Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, and Florian Rademacher

Published in: OASIcs, Volume 111, Joint Post-proceedings of the Third and Fourth International Conference on Microservices (Microservices 2020/2022)


Abstract
We formally define and implement a translation of domain and service models expressed in the LEMMA modelling ecosystem for microservice architectures to source code in the Jolie microservice programming language. Specifically, our work extends previous efforts on the generation of Jolie code to the inclusion of the LEMMA service modelling layer. We also contribute an implementation of our translation, given as an extension of the LEMMA2Jolie tool, which enables the practical application of our encoding. As a result, LEMMA2Jolie now supports a software development process whereby microservice architectures can first be designed by microservice developers in collaboration with domain experts in LEMMA, and then be automatically translated into Jolie APIs. Our tool can thus be used to enhance productivity and improve design adherence.

Cite as

Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, and Florian Rademacher. Model-Driven Code Generation for Microservices: Service Models. In Joint Post-proceedings of the Third and Fourth International Conference on Microservices (Microservices 2020/2022). Open Access Series in Informatics (OASIcs), Volume 111, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{giallorenzo_et_al:OASIcs.Microservices.2020-2022.6,
  author =	{Giallorenzo, Saverio and Montesi, Fabrizio and Peressotti, Marco and Rademacher, Florian},
  title =	{{Model-Driven Code Generation for Microservices: Service Models}},
  booktitle =	{Joint Post-proceedings of the Third and Fourth International Conference on Microservices (Microservices 2020/2022)},
  pages =	{6:1--6:17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-306-5},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{111},
  editor =	{Dorai, Gokila and Gabbrielli, Maurizio and Manzonetto, Giulio and Osmani, Aomar and Prandini, Marco and Zavattaro, Gianluigi and Zimmermann, Olaf},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.Microservices.2020-2022.6},
  URN =		{urn:nbn:de:0030-drops-194688},
  doi =		{10.4230/OASIcs.Microservices.2020-2022.6},
  annote =	{Keywords: Microservices, Model-driven Engineering, Code Generation, Jolie APIs}
}
Document
Modular Compilation for Higher-Order Functional Choreographies

Authors: Luís Cruz-Filipe, Eva Graversen, Lovro Lugović, Fabrizio Montesi, and Marco Peressotti

Published in: LIPIcs, Volume 263, 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
Choreographic programming is a paradigm for concurrent and distributed software, whereby descriptions of the intended communications (choreographies) are automatically compiled into distributed code with strong safety and liveness properties (e.g., deadlock-freedom). Recent efforts tried to combine the theories of choreographic programming and higher-order functional programming, in order to integrate the benefits of the former with the modularity of the latter. However, they do not offer a satisfactory theory of compilation compared to the literature, because of important syntactic and semantic shortcomings: compilation is not modular (editing a part might require recompiling everything) and the generated code can perform unexpected global synchronisations. In this paper, we find that these shortcomings are not mere coincidences. Rather, they stem from genuine new challenges posed by the integration of choreographies and functions: knowing which participants are involved in a choreography becomes nontrivial, and divergence in applications requires rethinking how to prove the semantic correctness of compilation. We present a novel theory of compilation for functional choreographies that overcomes these challenges, based on types and a careful design of the semantics of choreographies and distributed code. The result: a modular notion of compilation, which produces code that is deadlock-free and correct (it operationally corresponds to its source choreography).

Cite as

Luís Cruz-Filipe, Eva Graversen, Lovro Lugović, Fabrizio Montesi, and Marco Peressotti. Modular Compilation for Higher-Order Functional Choreographies. In 37th European Conference on Object-Oriented Programming (ECOOP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 263, pp. 7:1-7:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cruzfilipe_et_al:LIPIcs.ECOOP.2023.7,
  author =	{Cruz-Filipe, Lu{\'\i}s and Graversen, Eva and Lugovi\'{c}, Lovro and Montesi, Fabrizio and Peressotti, Marco},
  title =	{{Modular Compilation for Higher-Order Functional Choreographies}},
  booktitle =	{37th European Conference on Object-Oriented Programming (ECOOP 2023)},
  pages =	{7:1--7:37},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-281-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{263},
  editor =	{Ali, Karim and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.7},
  URN =		{urn:nbn:de:0030-drops-182005},
  doi =		{10.4230/LIPIcs.ECOOP.2023.7},
  annote =	{Keywords: Choreographies, Concurrency, \lambda-calculus, Type Systems}
}
Document
Pearl
Multiparty Languages: The Choreographic and Multitier Cases (Pearl)

Authors: Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi, and Pascal Weisenburger

Published in: LIPIcs, Volume 194, 35th European Conference on Object-Oriented Programming (ECOOP 2021)


Abstract
Choreographic languages aim to express multiparty communication protocols, by providing primitives that make interaction manifest. Multitier languages enable programming computation that spans across several tiers of a distributed system, by supporting primitives that allow computation to change the location of execution. Rooted into different theoretical underpinnings - respectively process calculi and lambda calculus - the two paradigms have been investigated independently by different research communities with little or no contact. As a result, the link between the two paradigms has remained hidden for long. In this paper, we show that choreographic languages and multitier languages are surprisingly similar. We substantiate our claim by isolating the core abstractions that differentiate the two approaches and by providing algorithms that translate one into the other in a straightforward way. We believe that this work paves the way for joint research and cross-fertilisation among the two communities.

Cite as

Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi, and Pascal Weisenburger. Multiparty Languages: The Choreographic and Multitier Cases (Pearl). In 35th European Conference on Object-Oriented Programming (ECOOP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 194, pp. 22:1-22:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{giallorenzo_et_al:LIPIcs.ECOOP.2021.22,
  author =	{Giallorenzo, Saverio and Montesi, Fabrizio and Peressotti, Marco and Richter, David and Salvaneschi, Guido and Weisenburger, Pascal},
  title =	{{Multiparty Languages: The Choreographic and Multitier Cases}},
  booktitle =	{35th European Conference on Object-Oriented Programming (ECOOP 2021)},
  pages =	{22:1--22:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-190-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{194},
  editor =	{M{\o}ller, Anders and Sridharan, Manu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2021.22},
  URN =		{urn:nbn:de:0030-drops-140658},
  doi =		{10.4230/LIPIcs.ECOOP.2021.22},
  annote =	{Keywords: Distributed Programming, Choreographies, Multitier Languages}
}
Document
Formalising a Turing-Complete Choreographic Language in Coq

Authors: Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti

Published in: LIPIcs, Volume 193, 12th International Conference on Interactive Theorem Proving (ITP 2021)


Abstract
The theory of choreographic languages typically includes a number of complex results that are proved by structural induction. The high number of cases and the subtle details in some of them lead to long reviewing processes, and occasionally to errors being found in published proofs. In this work, we take a published proof of Turing completeness of a choreographic language and formalise it in Coq. Our development includes formalising the choreographic language, its basic properties, Kleene’s theory of partial recursive functions, the encoding of these functions as choreographies, and a proof that this encoding is correct. With this effort, we show that theorem proving can be a very useful tool in the field of choreographic languages: besides the added degree of confidence that we get from a mechanised proof, the formalisation process led us to a significant simplification of the underlying theory. Our results offer a foundation for the future formal development of choreographic languages.

Cite as

Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. Formalising a Turing-Complete Choreographic Language in Coq. In 12th International Conference on Interactive Theorem Proving (ITP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 193, pp. 15:1-15:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cruzfilipe_et_al:LIPIcs.ITP.2021.15,
  author =	{Cruz-Filipe, Lu{\'\i}s and Montesi, Fabrizio and Peressotti, Marco},
  title =	{{Formalising a Turing-Complete Choreographic Language in Coq}},
  booktitle =	{12th International Conference on Interactive Theorem Proving (ITP 2021)},
  pages =	{15:1--15:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-188-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{193},
  editor =	{Cohen, Liron and Kaliszyk, Cezary},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.15},
  URN =		{urn:nbn:de:0030-drops-139109},
  doi =		{10.4230/LIPIcs.ITP.2021.15},
  annote =	{Keywords: Choreographic Programming, Formalisation, Turing Completeness}
}
Document
Complete Volume
OASIcs, Volume 78, Microservices 2017/2019, Complete Volume

Authors: Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and Sabine Sachweh

Published in: OASIcs, Volume 78, Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)


Abstract
OASIcs, Volume 78, Microservices 2017/2019, Complete Volume

Cite as

Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019). Open Access Series in Informatics (OASIcs), Volume 78, pp. 1-98, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Proceedings{cruzfilipe_et_al:OASIcs.Microservices.2017-2019,
  title =	{{OASIcs, Volume 78, Microservices 2017/2019, Complete Volume}},
  booktitle =	{Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)},
  pages =	{1--98},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-137-5},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{78},
  editor =	{Cruz-Filipe, Lu{\'\i}s and Giallorenzo, Saverio and Montesi, Fabrizio and Peressotti, Marco and Rademacher, Florian and Sachweh, Sabine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.Microservices.2017-2019},
  URN =		{urn:nbn:de:0030-drops-118301},
  doi =		{10.4230/OASIcs.Microservices.2017-2019},
  annote =	{Keywords: OASIcs, Volume 78, Microservices 2017/2019, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and Sabine Sachweh

Published in: OASIcs, Volume 78, Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019). Open Access Series in Informatics (OASIcs), Volume 78, pp. 0:i-0:xiv, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cruzfilipe_et_al:OASIcs.Microservices.2017-2019.0,
  author =	{Cruz-Filipe, Lu{\'\i}s and Giallorenzo, Saverio and Montesi, Fabrizio and Peressotti, Marco and Rademacher, Florian and Sachweh, Sabine},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)},
  pages =	{0:i--0:xiv},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-137-5},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{78},
  editor =	{Cruz-Filipe, Lu{\'\i}s and Giallorenzo, Saverio and Montesi, Fabrizio and Peressotti, Marco and Rademacher, Florian and Sachweh, Sabine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.Microservices.2017-2019.0},
  URN =		{urn:nbn:de:0030-drops-118225},
  doi =		{10.4230/OASIcs.Microservices.2017-2019.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Using Microservices to Customize Multi-Tenant SaaS: From Intrusive to Non-Intrusive

Authors: Hui Song, Phu H. Nguyen, and Franck Chauvel

Published in: OASIcs, Volume 78, Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)


Abstract
Customization is a widely adopted practice on enterprise software applications such as Enterprise resource planning (ERP) or Customer relation management (CRM). Software vendors deploy their enterprise software product on the premises of a customer, which is then often customized for different specific needs of the customer. When enterprise applications are moving to the cloud as mutli-tenant Software-as-a-Service (SaaS), the traditional way of on-premises customization faces new challenges because a customer no longer has an exclusive control to the application. To empower businesses with specific requirements on top of the shared standard SaaS, vendors need a novel approach to support the customization on the multi-tenant SaaS. In this paper, we summarize our two approaches for customizing multi-tenant SaaS using microservices: intrusive and non-intrusive. The paper clarifies the key concepts related to the problem of multi-tenant customization, and describes a design with a reference architecture and high-level principles. We also discuss the key technical challenges and the feasible solutions to implement this architecture. Our microservice-based customization solution is promising to meet the general customization requirements, and achieves a balance between isolation, assimilation and economy of scale.

Cite as

Hui Song, Phu H. Nguyen, and Franck Chauvel. Using Microservices to Customize Multi-Tenant SaaS: From Intrusive to Non-Intrusive. In Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019). Open Access Series in Informatics (OASIcs), Volume 78, pp. 1:1-1:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{song_et_al:OASIcs.Microservices.2017-2019.1,
  author =	{Song, Hui and Nguyen, Phu H. and Chauvel, Franck},
  title =	{{Using Microservices to Customize Multi-Tenant SaaS: From Intrusive to Non-Intrusive}},
  booktitle =	{Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)},
  pages =	{1:1--1:18},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-137-5},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{78},
  editor =	{Cruz-Filipe, Lu{\'\i}s and Giallorenzo, Saverio and Montesi, Fabrizio and Peressotti, Marco and Rademacher, Florian and Sachweh, Sabine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.Microservices.2017-2019.1},
  URN =		{urn:nbn:de:0030-drops-118230},
  doi =		{10.4230/OASIcs.Microservices.2017-2019.1},
  annote =	{Keywords: Customization, Software-as-a-Service (SaaS), Microservices, Multi-tenancy, Cloud, Reference Architecture}
}
Document
Experience Report: First Steps towards a Microservice Architecture for Virtual Power Plants in the Energy Sector

Authors: Manuel Wickert, Sven Liebehentze, and Albert Zündorf

Published in: OASIcs, Volume 78, Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)


Abstract
Virtual Power Plants provide energy sector stakeholders a useful abstraction for distributed energy resources by aggregating them. Software systems enabling this are critical infrastructure and must handle a fast-growing number of distributed energy resources. Modern architecture such as Microservice architecture can therefore be a good choice for dealing with such scalable systems where changing market and regulation requirements are part of every day business. In this report, we outline first experiences gained during the change from the existing Virtual Power Plant software monolith to Microservice architecture.

Cite as

Manuel Wickert, Sven Liebehentze, and Albert Zündorf. Experience Report: First Steps towards a Microservice Architecture for Virtual Power Plants in the Energy Sector. In Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019). Open Access Series in Informatics (OASIcs), Volume 78, pp. 2:1-2:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{wickert_et_al:OASIcs.Microservices.2017-2019.2,
  author =	{Wickert, Manuel and Liebehentze, Sven and Z\"{u}ndorf, Albert},
  title =	{{Experience Report: First Steps towards a Microservice Architecture for Virtual Power Plants in the Energy Sector}},
  booktitle =	{Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)},
  pages =	{2:1--2:10},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-137-5},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{78},
  editor =	{Cruz-Filipe, Lu{\'\i}s and Giallorenzo, Saverio and Montesi, Fabrizio and Peressotti, Marco and Rademacher, Florian and Sachweh, Sabine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.Microservices.2017-2019.2},
  URN =		{urn:nbn:de:0030-drops-118247},
  doi =		{10.4230/OASIcs.Microservices.2017-2019.2},
  annote =	{Keywords: Microservices, VPP, Virtual Power Plants, Domain Driven Design}
}
Document
Exploring Maintainability Assurance Research for Service- and Microservice-Based Systems: Directions and Differences

Authors: Justus Bogner, Adrian Weller, Stefan Wagner, and Alfred Zimmermann

Published in: OASIcs, Volume 78, Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)


Abstract
To ensure sustainable software maintenance and evolution, a diverse set of activities and concepts like metrics, change impact analysis, or antipattern detection can be used. Special maintainability assurance techniques have been proposed for service- and microservice-based systems, but it is difficult to get a comprehensive overview of this publication landscape. We therefore conducted a systematic literature review (SLR) to collect and categorize maintainability assurance approaches for service-oriented architecture (SOA) and microservices. Our search strategy led to the selection of 223 primary studies from 2007 to 2018 which we categorized with a threefold taxonomy: a) architectural (SOA, microservices, both), b) methodical (method or contribution of the study), and c) thematic (maintainability assurance subfield). We discuss the distribution among these categories and present different research directions as well as exemplary studies per thematic category. The primary finding of our SLR is that, while very few approaches have been suggested for microservices so far (24 of 223, ∼11%), we identified several thematic categories where existing SOA techniques could be adapted for the maintainability assurance of microservices.

Cite as

Justus Bogner, Adrian Weller, Stefan Wagner, and Alfred Zimmermann. Exploring Maintainability Assurance Research for Service- and Microservice-Based Systems: Directions and Differences. In Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019). Open Access Series in Informatics (OASIcs), Volume 78, pp. 3:1-3:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bogner_et_al:OASIcs.Microservices.2017-2019.3,
  author =	{Bogner, Justus and Weller, Adrian and Wagner, Stefan and Zimmermann, Alfred},
  title =	{{Exploring Maintainability Assurance Research for Service- and Microservice-Based Systems: Directions and Differences}},
  booktitle =	{Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)},
  pages =	{3:1--3:22},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-137-5},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{78},
  editor =	{Cruz-Filipe, Lu{\'\i}s and Giallorenzo, Saverio and Montesi, Fabrizio and Peressotti, Marco and Rademacher, Florian and Sachweh, Sabine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.Microservices.2017-2019.3},
  URN =		{urn:nbn:de:0030-drops-118255},
  doi =		{10.4230/OASIcs.Microservices.2017-2019.3},
  annote =	{Keywords: Maintainability, Software Evolution, Quality Assurance, Service-Based Systems, SOA, Microservices, Systematic Literature Review}
}
Document
Introduction to Microservice API Patterns (MAP)

Authors: Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe Zdun

Published in: OASIcs, Volume 78, Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)


Abstract
The Microservice API Patterns (MAP) language and supporting website premiered under this name at Microservices 2019. MAP distills proven, platform- and technology-independent solutions to recurring (micro-)service design and interface specification problems such as finding well-fitting service granularities, rightsizing message representations, and managing the evolution of APIs and their implementations. In this paper, we motivate the need for such a pattern language, outline the language organization and present two exemplary patterns describing alternative options for representing nested data. We also identify future research and development directions.

Cite as

Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe Zdun. Introduction to Microservice API Patterns (MAP). In Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019). Open Access Series in Informatics (OASIcs), Volume 78, pp. 4:1-4:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{zimmermann_et_al:OASIcs.Microservices.2017-2019.4,
  author =	{Zimmermann, Olaf and Stocker, Mirko and L\"{u}bke, Daniel and Pautasso, Cesare and Zdun, Uwe},
  title =	{{Introduction to Microservice API Patterns (MAP)}},
  booktitle =	{Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)},
  pages =	{4:1--4:17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-137-5},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{78},
  editor =	{Cruz-Filipe, Lu{\'\i}s and Giallorenzo, Saverio and Montesi, Fabrizio and Peressotti, Marco and Rademacher, Florian and Sachweh, Sabine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.Microservices.2017-2019.4},
  URN =		{urn:nbn:de:0030-drops-118268},
  doi =		{10.4230/OASIcs.Microservices.2017-2019.4},
  annote =	{Keywords: application programming interfaces, distributed systems, enterprise application integration, service-oriented computing, software architecture}
}
Document
PREvant (Preview Servant): Composing Microservices into Reviewable and Testable Applications

Authors: Marc Schreiber

Published in: OASIcs, Volume 78, Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)


Abstract
This paper introduces PREvant (preview servant), a software tool which provides a simple RESTful API for deploying and composing containerized microservices as reviewable applications. PREvant’s API serves as a connector between continuous delivery pipelines of microservices and the infrastructure that hosts the applications. Based on the REST API and a web interface developers and domain experts at aixigo AG developed quality assurance workflows that help to increase and maintain high microservice quality.

Cite as

Marc Schreiber. PREvant (Preview Servant): Composing Microservices into Reviewable and Testable Applications. In Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019). Open Access Series in Informatics (OASIcs), Volume 78, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{schreiber:OASIcs.Microservices.2017-2019.5,
  author =	{Schreiber, Marc},
  title =	{{PREvant (Preview Servant): Composing Microservices into Reviewable and Testable Applications}},
  booktitle =	{Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)},
  pages =	{5:1--5:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-137-5},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{78},
  editor =	{Cruz-Filipe, Lu{\'\i}s and Giallorenzo, Saverio and Montesi, Fabrizio and Peressotti, Marco and Rademacher, Florian and Sachweh, Sabine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.Microservices.2017-2019.5},
  URN =		{urn:nbn:de:0030-drops-118272},
  doi =		{10.4230/OASIcs.Microservices.2017-2019.5},
  annote =	{Keywords: Microservice development, testing for microservices, exploratory testing, development workflows}
}
Document
A Uniform Framework for Timed Automata

Authors: Tomasz Brengos and Marco Peressotti

Published in: LIPIcs, Volume 59, 27th International Conference on Concurrency Theory (CONCUR 2016)


Abstract
Timed automata, and machines alike, currently lack a general mathematical characterisation. In this paper we provide a uniform coalgebraic understanding of these devices. This framework encompasses known behavioural equivalences for timed automata and paves the way for the extension of these notions to new timed behaviours and for the instantiation of established results from the coalgebraic theory as well. Key to this work is the use of lax functors for they allow us to model time flow as a context property and hence offer a general and expressive setting where to study timed systems: the index category encodes "how step sequences form executions" (e.g. whether steps duration get accumulated or kept distinct) whereas the base category encodes "step nature and composition" (e.g. non-determinism and labels). Finally, we develop the notion of general saturation for lax functors and show how equivalences of interest for timed behaviours are instances of this notion. This characterisation allows us to reason about the expressiveness of said notions within a uniform framework and organise them in a spectrum independent from the behavioural aspects encoded in the base category.

Cite as

Tomasz Brengos and Marco Peressotti. A Uniform Framework for Timed Automata. In 27th International Conference on Concurrency Theory (CONCUR 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 59, pp. 26:1-26:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{brengos_et_al:LIPIcs.CONCUR.2016.26,
  author =	{Brengos, Tomasz and Peressotti, Marco},
  title =	{{A Uniform Framework for Timed Automata}},
  booktitle =	{27th International Conference on Concurrency Theory (CONCUR 2016)},
  pages =	{26:1--26:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-017-0},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{59},
  editor =	{Desharnais, Jos\'{e}e and Jagadeesan, Radha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2016.26},
  URN =		{urn:nbn:de:0030-drops-61690},
  doi =		{10.4230/LIPIcs.CONCUR.2016.26},
  annote =	{Keywords: coalgebras, lax functors, general saturation, timed behavioural equivalence, timed language equivalence}
}
  • Refine by Author
  • 8 Peressotti, Marco
  • 7 Montesi, Fabrizio
  • 5 Cruz-Filipe, Luís
  • 4 Giallorenzo, Saverio
  • 3 Rademacher, Florian
  • Show More...

  • Refine by Classification
  • 5 Applied computing → Service-oriented architectures
  • 3 Software and its engineering → Cloud computing
  • 2 Computing methodologies → Distributed programming languages
  • 2 Information systems → RESTful web services
  • 2 Software and its engineering → Development frameworks and environments
  • Show More...

  • Refine by Keyword
  • 4 Microservices
  • 3 Choreographies
  • 2 Choreographic Programming
  • 1 Cloud
  • 1 Code Generation
  • Show More...

  • Refine by Type
  • 13 document
  • 1 volume

  • Refine by Publication Year
  • 8 2020
  • 3 2023
  • 2 2021
  • 1 2016

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail